Lý thuyết Giá trị phân số của một số

Tải về

Lý thuyết Giá trị phân số của một số Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu

Quảng cáo

I. Tính giá trị phân số của một số cho trước

Muốn tìm $\dfrac{m}{n}$ của số $b$ cho trước, ta tính $b.\dfrac{m}{n}$ $\left( {m,n \in \mathbb{N},n \ne 0} \right)$

Ví dụ:

a) $\dfrac{2}{3}$ của $8,7$ là: $8,7.\dfrac{2}{3} = \left( {8,7:3} \right).2 = 2,9.2 = 5,8$.

b) $\dfrac{2}{3}$ của $\dfrac{{ - 15}}{2}$ là: $\dfrac{{ - 15}}{2} .\dfrac{2}{3}= - 5$.

II. Tìm một số khi biết giá trị phân số của nó

Muốn tìm một số khi biết giá trị $\dfrac{m}{n}$ của nó bằng $a$, ta tính $a:\dfrac{m}{n}$ $\left( {m,n \in {\mathbb{N}^*}} \right)$.

Ví dụ:

Tìm một số biết $\dfrac{2}{3}$ của nó bằng $7,2$

Số cần tìm là: $7,2:\dfrac{2}{3} = 7,2.\dfrac{3}{2} = 10,8.$

Tải về

Quảng cáo

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close