Lý thuyết đối xứng tâm

Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó

Quảng cáo

I. Các kiến thức cần nhớ 

1. Hai điểm đối xứng qua một điểm

Định nghĩa: Hai điểm  AA, BB gọi là đối xứng với nhau qua điểm OO nếu OO là trung điểm của đoạn thẳng nối hai điểm đó.

Quy ước: Điểm đối xứng với điểm OO qua điểm OO cũng là điểm OO

Ví dụ:  BB đối xứng với AA qua OO nếu OO là trung điểm của ABAB

2. Hai hình đối xứng qua một điểm

Định nghĩa: Hai hình gọi là đối xứng với nhau qua điểm OO nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm OO và ngược lại. Điểm OO gọi là tâm đối xứng của hai hình đó.

Chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

3. Hình có tâm đối xứng

Định nghĩa: Điểm OO gọi là tâm đối xứng của hình HH nếu điểm đối xứng với mỗi điểm thuộc hình HH qua điểm OO cũng thuộc hình HH . Ta nói hình HH có tâm đối xứng.

Định lý: Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Ví dụ: Giao điểm OO của ACACBDBD là tâm của hình bình hành ABCD.ABCD.

2. Các dạng toán thường gặp

Dạng 1: Tính độ dài cạnh, chu vi tam giác, tứ giác.

Phương pháp:

Sử dụng chú ý: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

Dạng 2: Xác định tâm đối xứng của một hình. Xác định các yếu tố đối xứng nhau qua một điểm. Chứng minh các hệ thức hình học.

Phương pháp:

Ta thường sử dụng các định nghĩa và định lý sau:

+ Hai điểm  AA, BB gọi là đối xứng với nhau qua điểm OO nếu OO là trung điểm của đoạn thẳng nối hai điểm đó.

+ Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

close