Lý thuyết các trường hợp đồng dạng của tam giác vuông

1. Áp dụng các trường hợp đồng dạng của tam giác và tam giác vuông

Quảng cáo

1. Các kiến thức cần nhớ 

Từcác trường hợp đồng dạng của tam giác đã học suy ra: Hai tam giác vuông đồng dạng nếu có một trong các điều kiện:

+ Một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia;

+ Hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

Định lý:

Trường hợp đồng dạng đặc biệt: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đồng dạng.

Nếu $\Delta ABC$ và $\Delta A'B'C'$ có $\widehat A = \widehat {A'} = {90^o}$ và $\dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}}$ (h.1) thì $\Delta ABC\backsim\Delta A'B'C'$.

Tỉ số đường cao, tỉ số diện tích của hai tam giác đồng dạng

Nếu hai tam giác đồng dạng thì:

+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng;

+ Tỉ số hai diện tích bằng bình phương tỉ số đồng dạng.

2. Các dạng toán thường gặp

Dạng 1: Sử dụng tam giác đồng dạng , tỉ số đường cao, tỉ số diện tích để tính toán.

Phương pháp:

+ Từ tam giác đồng dạng suy ra các cặp cạnh tỉ lệ và các góc bằng nhau, suy ra tỉ số diện tích và tỉ số đường cao

+ Từ đó tính cạnh , góc và các dữ kiện cần thiết

Dạng 2: Chứng minh hai tam giác đồng dạng và các vấn đề liên quan.

Phương pháp:

+ Sử dụng các trường  hợp đồng dạng của tam giác để chứng minh tam giác đồng dạng

+ Từ đó suy ra các hệ thức cần chứng minh

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close