Câu 20 :
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia đối của tia CB theo thứ tự lấy hai điểm D và E sao cho \(BD = CE\).
a) Chứng minh \(\Delta ADE\) cân.
b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE và \(AM \bot DE\).
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD, AE. Chứng minh: \(BH = CK\).
d) Chứng minh: HK//BC.