Độ dài x trong Hình 4.31 bằng
A. 2,75
B. 2.
C. 2,25.
D. 3,75.
Cho tam giác ABC. Gọi H, K lần lượt là trung điểm của AC, BC. Biết HK = 3,5 cm. Độ dài AB bằng
A. 3,5 cm.
B. 7 cm.
C. 10 cm.
D. 15 cm.
Cho tam giác ABC có chu vi là 32 cm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Chu vi của tam giác MNP là
A. 8 cm.
B. 64 cm.
C. 30 cm.
D. 16 cm.
Cho tam giác ABC có AB = 9 cm, D là điểm thuộc cạnh AB sao cho AD = 6 cm. Kẻ DE song song với BC (E thuộc AC), kẻ EF song song với CD (F thuộc AB). Độ dài AF bằng
A. 4 cm.
B. 5 cm.
C. 6 cm.
D. 7 cm.
Cho tam giác ABC cân tại A có AB = 15 cm, BC = 10 cm, đường phân giác trong của góc B cắt AC tại D. Khi đó, đoạn thẳng AD có độ dài là
A. 3 cm.
B. 6 cm.
C. 9 cm.
D. 12 cm.
Cho góc xOy. Trên tia Ox, lấy hai điểm A và B sao cho OA = 2 cm, OB = 5 cm. Trên tia Oy, lấy điểm C sao cho OC = 3 cm. Từ điểm B kẻ đường thẳng song song với AC cắt Oy tại D. Tính độ dài đoạn thẳng CD.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC.
a) Chứng minh rằng AE = DF.
b) Gọi I là trung điểm của DE. Chứng minh rằng ba điểm B, I, F thẳng hàng.
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K lần lượt là trung điểm của GB, GC. Chứng minh tứ giác EDKI là hình bình hành.
Cho tam giác ABC, điểm I thuộc cạnh AB, điểm K thuộc cạnh AC. Kẻ IM song song với BK (M thuộc AC), kẻ KN song song với CI (N thuộc AB). Chứng minh MN song song với BC.
Bác Mến muốn tính khoảng cách giữa hai vị trí P, Q ở hai bên bờ ao cá. Để làm điều đó, bác Mến chọn ba vị trí A, B, C, thực hiện đo đạc và vẽ mô phỏng như Hình 4.32. Em hãy giúp bác Mến tính khoảng cách giữa hai điểm P và Q.
Cho tam giác ABC có \(BC = 13cm.\) E và F lần lượt là trung điểm của AB, AC. Độ dài EF bằng:
A. 13cm
B. 26cm
C. 6,5cm
D. 3cm
Độ dài x trong Hình 5.13 là
A. 20
B. 50
C. 12
D. 30
Cho tam giác ABC cân tại B. Hai trung tuyến AM, BN cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Khẳng định nào đúng?
A. \(MN = \frac{1}{2}AC\)
B. \(BC = \frac{1}{2}IK\)
C. \(MN > IK\)
D. \(MN = IK\)
Cho hình thang ABCD (AB//DC). Gọi O là giao điểm của AC và BD. Xét các khẳng định sau:
(1) \(\frac{{OA}}{{OC}} = \frac{{OD}}{{OB}}\)
(2) \(OA.OD = OB.OC\)
(3) \(\frac{{AO}}{{AC}} = \frac{{BO}}{{BD}}\)
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Cho Hình 5.14, biết DE//AC. Độ dài x là
A. 5
B. 7
C. 6,5
D. 6,25
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Biết \(AG = 4cm\), độ dài của EI, DK là
A. \(EI = DK = 3cm\)
B. \(EI = 3cm,DK = 2cm\)
C. \(EI = DK = 2cm\)
D. \(EI = 1cm,DK = 2cm\)
Cho Hình 5.15, biết \(ED \bot AB,AC \bot AB.\) Khi đó, x có giá trị là
A. 2,5
B. 2
C. 3
D. 4
Cho \(\Delta ABC\). Tia phân giác góc trong của góc A cắt BC tại D. Cho \(AB = 6,AC = x,BD = 9,BC = 21\). Độ dài x bằng
A. 4
B. 6
D. 14
Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết \(AB = 3cm,BD = 4cm,CD = 6cm\). Độ dài AC bằng
A. 4cm
B. 5cm
C. 6cm
D. 4,5cm
Cho \(\Delta ABC\) đều, cạnh 3cm; M, N lần lượt là trung điểm AB, AC. Chu vi của tứ giác MNCB bằng
A. 8cm
B. 7,5cm
D. 7cm
Cho tam giác ABC có \(AB = 6cm,AC = 8cm,BC = 10cm.\) Gọi H, I, K lần lượt là trung điểm của AB, BC, AC. Chu vi tứ giác AHIK bằng:
A. 7cm
B. 14cm
C. 24cm
D. 12cm
Cho hình thoi ABCD có M là trung điểm của AD, đường chéo AC cắt BM tại điểm E (H.5.16)
Tỉ số \(\frac{{EM}}{{EB}}\) bằng
A. \(\frac{1}{3}\)
C. \(\frac{1}{2}\)
D. \(\frac{2}{3}\)
Cho tam giác ABC, điểm I nằm trong tam giác. Lấy điểm D trên IA, qua D kẻ đường thẳng song song với AB, cắt IB tại E. Qua E kẻ đường thẳng song song với BC, cắt IC tại F. Chứng minh rằng: DF//AC
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh \(MI = IK = KN\).
Cho tam giác ABC cân tại A, các đường phân giác BD, CE \(\left( {D \in AC,E \in AB} \right)\). Chứng minh DE//BC
Cho hình bình hành ABCD, điểm E thuộc cạnh AB (E khác A và B), điểm F thuộc cạnh AD (F khác A và D). Đường thẳng qua D song song với EF cắt AC tại I. Đường thẳng qua B song song với EF cắt AC tại K.
a) Chứng minh rằng \(AI = CK\).
b) Gọi N là giao điểm của EF và AC. Chứng minh rằng: \(\frac{{AB}}{{AE}} + \frac{{AD}}{{AF}} = \frac{{AC}}{{AN}}\).
Cho góc nhọn xOy. Trên cạnh Ox lấy điểm N, trên cạnh Oy lấy điểm M. Gọi I là một điểm trên đoạn thẳng MN. Qua I kẻ đường thẳng song song với Ox cắt Oy tại A (A khác M và N) và đường thẳng song song với Oy cắt Ox ở B. Chứng minh rằng \(\frac{{MA}}{{MO}} + \frac{{NB}}{{NO}} = 1\)
Cho hình bình hành ABCD, AC cắt BD tại O. Đường phân giác góc A cắt BD tại M, đường phân giác góc D cắt AC tại N. Chứng minh MN//AD.
Bác Mến muốn tính khoảng cách giữa hai vị trí P, Q ở hai bên bờ ao cá. Để làm điều đó, bác Mến chọn ba vị trí A, B, C, thực hiện đo đạc và vẽ mô phỏng như Hình 4.34. Em hãy giúp bác Mến tính khoảng cách giữa hai điểm P và Q.