Khi quay hình chữ nhật ABCD một vòng quanh cạnh AB ta được một hình trụ có bán kính đáy bằng độ dài đoạn thẳng
A. AB.
B. CD.
C. AD.
D. AC.
Cho tam giác ABC vuông tại A có \(AB = 4cm,BC = 5cm\). Khi quay tam giác ABC một vòng quanh cạnh AC ta được một hình nón có chiều cao bằng
A. 4cm.
B. 3cm.
C. 5cm.
D. 9cm.
Diện tích mặt cầu có đường kính 10cm là
A. \(10\pi \;c{m^2}\).
B. \(400\pi \;c{m^2}\).
C. \(50\pi \;c{m^2}\).
D. \(100\pi \;c{m^2}\).
Cho hình nón có bán kính đáy \(R = 2cm\), độ dài đường sinh \(l = 5cm\). Diện tích xung quanh của hình nón đã cho bằng
A. \(\frac{{10\pi }}{3}\;c{m^2}\).
B. \(\frac{{50\pi }}{3}\;c{m^2}\).
C. \(20\pi \;c{m^2}\).
D. \(10\pi \;c{m^2}\).
Một mặt phẳng đi qua tâm hình cầu, cắt hình cầu theo một hình tròn có diện tích \(9\pi \;c{m^2}\). Thể tích của hình cầu bằng
A. \(972\pi \;c{m^3}\).
B. \(36\pi \;c{m^3}\).
C. \(6\pi \;c{m^3}\).
D. \(81\pi \;c{m^3}\).
Cho hình trụ có bán kính đáy bằng 20cm, chiều cao bằng 30cm.
a) Tính diện tích xung quanh của hình trụ.
b) Tính thể tích của hình trụ.
Cho hình nón có bán kính đáy bằng 9cm, độ dài đường sinh bằng 15cm (H.10.34).
a) Tính diện tích xung quanh của hình nón.
b) Tính thể tích của hình nón.
c) Diện tích toàn phần của hình nón bằng tổng diện tích xung quanh và diện tích đáy. Tính diện tích toàn phần của hình nón đã cho.
Quả bóng rổ sử dụng trong thi đấu có dạng hình cầu với đường kính 24cm (H.10.35). Hãy tính:
a) Diện tích bề mặt quả bóng.
b) Thể tích của quả bóng.
Đèn trời có dạng hình trụ không có một đáy với đường kính đáy bằng 0,8m và thân đèn cao 1m. Tính diện tích giấy dán bên ngoài đèn trời.
Các hình dưới đây (H.10.37) được tạo thành từ các nửa hình cầu, hình trụ và hình nón (có cùng bán kính đáy). Tính thể tích của các hình đó theo kích thước đã cho.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính thể tích của hình nón có đỉnh là tâm O của hình vuông ABCD và đáy là hình tròn tiếp xúc với các cạnh của hình vuông A’B’C’D’ (H.10.38).
Bạn Khôi cho một hòn đá cảnh vào một bể nuôi cá hình trụ có đường kính đáy bằng 20cm thì nước trong bể dâng lên 3cm. Hỏi hòn đá cảnh đó có thể tích bằng bao nhiêu?
Một chiếc kem ốc quế gồm hai phần: Phần phía dưới dạng hình nón có chiều cao gấp đôi bán kính đáy, phần trên là nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới (H.10.39). Thể tích phần kem phía trên bằng \(200c{m^3}\). Tính thể tích của cả chiếc kem.
Mái nhà hát Cao Văn Lầu và Trung tâm triển lãm Văn hóa Nghệ thuật tỉnh Bạc Liêu có hình dáng ba chiếc nón lá lớn nhất Việt Nam (H.10.40). Tính diện tích một mái nhà hình nón có đường kính bằng 45m và chiều cao bằng 24m (làm tròn kết quả đến hàng đơn vị của \({m^2}\)).
Gọi h, R lần lượt là độ dài của chiều cao và bán kính đáy của hình trụ. Diện tích xung quanh của hình trụ là
A. \({S_{xq}} = 2\pi Rh\).
B. \({S_{xq}} = \pi Rh\).
C. \({S_{xq}} = \pi Rl\).
D. \({S_{xq}} = \pi {R^2}h\).
Một hình trụ có bán kính đáy bằng 6cm, chiều cao bằng 10cm. Thể tích của hình trụ này là
A. \(V = 300\pi \left( {c{m^3}} \right)\).
B. \(V = 320\pi \left( {c{m^3}} \right)\).
C. \(V = 340\pi \left( {c{m^3}} \right)\).
D. \(V = 360\pi \left( {c{m^3}} \right)\).
Một hình trụ có chu vi của đường tròn đáy bằng \(4\pi a\), chiều cao bằng a. Thể tích của hình trụ này là
A. \(V = 2\pi {a^3}\).
B. \(V = 4\pi {a^3}\).
C. \(V = 16\pi {a^3}\).
D. \(V = \frac{4}{3}\pi {a^3}\).
Hình trụ có bán kính đáy bằng \(2\sqrt 3 cm\) và thể tích bằng \(24\pi \;c{m^3}\). Chiều cao của hình trụ này là
A. \(h = 2cm\).
B. \(h = 6cm\).
C. \(h = 2\sqrt 3 cm\).
D. \(h = 1cm\).
Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón. Đẳng thức nào sau đây luôn đúng?
A. \({l^2} = {h^2} + {R^2}\).
B. \(\frac{1}{{{l^2}}} = \frac{1}{{{h^2}}} + \frac{1}{{{R^2}}}\).
C. \({R^2} = {h^2} + {l^2}\).
D. \({l^2} = hR\).
Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón. Diện tích xung quanh của hình nón là
A. \({S_{xq}} = 2\pi Rl\).
Thể tích V của hình nón có chiều cao bằng a và độ dài đường sinh bằng \(a\sqrt 5 \) là
A. \(V = 4\pi {a^3}\).
B. \(V = \frac{4}{3}\pi {a^3}\).
C. \(V = \frac{2}{3}\pi {a^3}\).
D. \(V = \frac{5}{3}\pi {a^3}\).
Cho hình nón có diện tích xung quanh \(25\pi \;c{m^2}\), bán kính đường tròn đáy bằng 5cm. Độ dài đường sinh của hình nón là
A. \(l = 1cm\).
B. \(l = \frac{5}{2}cm\).
C. \(l = 5cm\).
D. \(l = 3cm\).
Gọi R là bán kính, S là diện tích mặt cầu và V là thể tích của hình cầu. Công thức nào sau đây là sai?
A. \(3V = SR\).
B. \(S = 4\pi {R^2}\).
C. \(V = \frac{4}{3}\pi {R^3}\).
D. \(S = \pi {R^2}\).
Một mặt cầu có diện tích \(36\pi \,{m^2}\). Thể tích của hình cầu này là
A. \(V = \frac{4}{3}\pi \;{m^3}\).
B. \(V = 36\pi \;{m^3}\).
C. \(V = 72\pi \;{m^3}\).
D. \(V = 108\pi \;{m^3}\).
Một khối gỗ có dạng hình trụ, chiều cao bằng 50cm, đường kính đáy bằng 30cm.
a) Tính thể tích của khối gỗ.
b) Nếu sơn phủ kín mặt bên ngoài khối gỗ thì diện tích cần sơn là bao nhiêu (làm tròn kết quả đến hàng đơn vị của \(c{m^2}\))?
Một chiếc nón lá có dạng một hình nón không có đáy, đường kính đáy bằng 80cm, chiều cao bằng 30cm. Tính diện tích mặt ngoài của chiếc nón (làm tròn kết quả đến hàng đơn vị của \(c{m^2}\)).
Bạn Khôi có một chiếc bể cá làm bằng thủy tinh, có dạng hình cầu, đường kính 22cm. Khi nuôi cá, Khôi thường đổ vào bể lượng nước có thể tích bằng \(\frac{2}{3}\) thể tích của bể. Tính thể tích nước bạn Khôi đổ vào bể khi nuôi cá (làm tròn kết quả đến hàng đơn vị của \(c{m^3}\)).
Người ta cần làm một ống thoát nước hình trụ bằng bê tông (H.10.6) có chiều cao là 200cm, độ dày của thành ống là 15cm, đường kính của ống là 80cm. Tính lượng bê tông cần dùng để làm ống thoát nước nói trên.
Một hộp đựng bóng bàn có dạng hình trụ chứa vừa khít 3 quả bóng bàn có cùng bán kính R xếp theo chiều ngang (H.10.7). Gọi \({S_1}\) là tổng diện tích của ba quả bóng bàn, \({S_2}\) là diện tích xung quanh của vỏ hộp hình trụ. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).
Một khối gỗ hình trụ tròn xoay có bán kính đáy bằng 1m, chiều cao bằng 2m. Người ta khoét từ hai đầu khối gỗ hai nửa hình cầu mà đường tròn đáy của khối gỗ là đường tròn lớn của mỗi nửa khối cầu (H.10.8). Tính tỉ số thể tích phần còn lại của khối gỗ và cả khối gỗ ban đầu.
Một dụng gồm một phần có dạng hình trụ và một phần có dạng hình nón với kích thước như Hình 10.9.
a) Tính thể tích của dụng cụ này.
b) Tính diện tích mặt ngoài của dụng cụ (không tính nắp đậy, kết quả làm tròn đến hàng phần mười của \({m^2}\)).
Khi quay hình chữ nhật ABCD quanh cạnh AB ta được một hình trụ có bán kính đáy bằng độ dài đoạn thẳng:
Cho \(\Delta \)ABC vuông tại A có \(AB = 4cm,BC = 5cm\). Khi quay \(\Delta \)ABC quanh cạnh AC ta được một hình nón có chiều cao bằng:
Diện tích mặt cầu tâm O, đường kính 10cm là:
Cho hình nón có bán kính đáy \(r = 2cm\), độ dài đường sinh \(l = 5cm\). Diện tích xung quanh của hình nón đã cho bằng:
Một mặt phẳng đi qua tâm mặt cầu cắt mặt cầu theo một đường tròn có diện tích \(9\pi \;c{m^2}\). Thể tích của mặt cầu bằng:
Cho hình nón có bán kính đáy bằng 9cm, độ dài đường sinh bằng 15cm.
Quả bóng rổ sử dụng trong thi đấu có dạng hình cầu với đường kính 24cm. Hãy tính:
Đèn trời có dạng hình trụ không có một đáy với đường kính đáy bằng 0,8m và thân đèn cao 1m. Tính diện tích giấy dán bên ngoài đèn trời (coi các mép dán không đáng kể).
Các hình dưới đây được tạo thành từ các nửa hình cầu, hình trụ và hình nón (có cùng bán kính đáy). Tính thể tích của các hình đó theo kích thước đã cho.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính thể tích của hình nón có đỉnh là tâm O của hình vuông ABCD và đáy là hình tròn nội tiếp hình vuông A’B’C’D’.
Bạn Khôi cho một cục đá vào một bể nuôi cá hình trụ có đường kính đáy bằng 20cm thì nước trong bể dâng lên 3cm. Hỏi hòn đá cảnh đó có thể tích bao nhiêu?
Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng \(200c{m^3}\). Tính thể tích của cả chiếc kem.
Nhà hát Cao Văn Lầu và Trung tâm triển lãm Văn hóa Nghệ thuật tỉnh Bạc Liêu có hình dáng ba chiếc nón lá lớn nhất Việt Nam. Tính diện tích mái nhà hình nón có đường kính bằng 45m và chiều cao bằng 24m (làm tròn kết quả đến hàng đơn vị của \({m^2}\)).
Tính thể tích hình tạo thành khi cho hình bên quay quanh IH một vòng.