Giá để đồ ở Hình 33 gợi nên hình ảnh hai tam giác ABC và A’B’C’ có: AB = A’B’, BC = B’C’, CA = C’A’.
Tam giác ABC có bằng tam giác A’B’C’ hay không?
Hai tam giác ở Hình 37 có bằng không? Vì sao?
Cho hai tam giác vuông ABC và A’B’C’ có: \(\widehat A = \widehat {A'} = 90^\circ ,AB = A'B' = 3\)cm,\(BC = B'C' = 5\)cm (Hình 39). So sánh độ dài các cạnh AC và A’C’.
Cho Hình 42 có MN = QN, MP = QP. Chứng minh \(\widehat {MNP} = \widehat {QNP}\).
Cho Hình 43 có AB = AD, \(\widehat {ABC} = \widehat {ADC} = 90^\circ \). Chứng minh \(\widehat {ACB} = \widehat {ACD}\).
Cho Hình 44 có AC = BD, \(\widehat {ABC} = \widehat {BAD} = 90^\circ \). Chứng minh AD = BC.
Cho hai tam giác ABC và MNP thỏa mãn: AB = MN, BC = NP, AC = MP, \(\widehat A = 65^\circ ,\widehat N = 71^\circ \). Tính số đo các góc còn lại của hai tam giác.
Quan sát các hình 9a, 9b, viết các cặp tam giác bằng nhau.
Cho hai tam giác bằng nhau: tam giác ABC và một tam giác có ba đỉnh là X, Y, Z. Viết kí hiệu sự bằng nhau của hai tam giác đó trong mỗi trường hợp sau:
a) \(\widehat {{A^{}}} = \widehat X,\widehat B = \widehat Z\)
b) AB = XY, BC = YZ
Bạn Sơn cho rằng “Nếu độ dài các cạnh của tam giác ABC đều là số tự nhiên và
∆ABC = ∆MNP thì tổng chu vi của tam giác ABC và tam giác MNP là số lẻ”. Bạn Sơn nói như vậy có đúng không? Vì sao?
Cho ∆ABC = ∆DEG có AB = 4 dm, BC = 7 dm, CA = 9,5 dm. Tính chu vi của tam giác DEG.
Cho ∆ABC = ∆GIK có số đo \(\widehat G,\widehat I,\widehat K\) tỉ lệ với 2; 3; 4. Tính số đo mỗi góc của tam giác ABC.
Cho ∆ABC = ∆XYZ có 3BC = 5AB, YZ – XY = 10 cm và AC = 35 cm. Tính độ dài mỗi cạnh của tam giác XYZ.
Cho ∆ABC = ∆XYZ, có \(\widehat {{A^{}}} + \widehat Y = {120^o}\) và \(\widehat {{A^{}}} - \widehat Y = {40^o}\) . Tính số đo mỗi góc của từng tam giác trên.
Cho ∆ABC = ∆MNP. Hai tia phân giác của góc B và C cắt nhau tại O tạo thành góc BOC bằng 120°. Tính tổng số đo các góc MNP và MPN của tam giác MNP.