Mở 1 chiếc compa sao cho hai đầu compa cách nhau một khoảng R cho trước. Tì đầu nhọn của compa lên một điểm cố định trên tờ giấy, xoay compa để đầu bút M của compa vạch trên giấy một đường cong. Nêu nhận xét về các khoảng cách từ một điểm M tuỳ ý trên đường cong vừa vẽ đến điểm O.
Nêu cách chia một cái bánh có dạng hình tròn tâm O (Hình 8) thành hai phần bằng nhau.
Xác định tâm đối xứng và trục đối xứng của bánh xe trong Hình 7. Giải thích cách làm.
a) Cho đường tròn (O;R).
i) Lấy điểm A nằm trên đường tròn. Vẽ đường thẳng AO cắt đường tròn tại điểm A’ khác A. Giải thích tại sao O là trung điểm của đoạn thẳng AA’.
ii) Lấy điểm B khác A thuộc đường tròn (O;R). Tìm điểm B’ sao cho O trung điểm của đoạn thẳng BB’. Điểm B’ có thuộc đường tròn (O;R) không? Giải thích.
b) Cho đường tròn (O;R), d là đường thẳng đi qua tâm O. Lấy điểm M nằm trên đường tròn. Vẽ điểm M’ sao cho d là đường trung trực của đoạn thẳng MM’ (khi M thuộc d thì lấy M’ trùng với M). Điểm M’ có thuộc đường tròn (O;R) không? Giải thích.
Trên đường tròn (O;R) lấy 4 điểm A, B, M, N sao cho AB đi qua O và MN không đi qua O (Hình 9).
a) Tính độ dài đoạn thẳng AB theo R.
b) So sánh độ dài của MN và OM + ON. Từ đó, so sánh độ dài của MN và AB.
Cho đường tròn (I) có các dây cung AB, CD, EF. Cho biết AB và CD đi qua tâm I, EF không đi qua I (Hình 11). Hãy so sánh độ dài AB, CD, EF.
Bạn Mai căng ba đoạn chỉ AB, CD, EF có độ dài lần lượt là 16 cm, 14 cm và 20 cm trên một khung thêu hình tròn bán kính 10 cm (Hình 12). Trong ba dây trên, dây nào đi qua tâm của hình tròn? Giải thích.
Tìm số điểm chung của hai đường tròn (O) và (O’) trong mỗi trường hợp sau:
Cho hai đường tròn phân biệt (O;R) và (O’;R’) với R \( \ge \) R’.
Hãy so sánh OO’ với R + R’ và R – R’ trong mỗi trường hợp sau:
Trường hợp 1: (O;R) và (O’;R’) không có điểm chung (Hình 15).
Trường hợp 2: (O;R) và (O’;R’) chỉ có 1 điểm chung (Hình 16).
Trường hợp 3: (O;R) và (O’;R’) có đúng 2 điểm chung (Hình 17).
Xác định vị trí tương đối giữa hai đường tròn (I;R) và (J;R’) trong mỗi trường hợp sau:
a) IJ = 5; R = 3; R’ = 2
b) IJ = 4; R = 11; R’ = 7
c) IJ = 6; R = 9; R’ = 4
d) IJ = 10; R = 4; R’ = 1
Mô tả vị trí tương đối giữa mỗi cặp đường tròn trong hình chụp bộ cồng chiêng Tây Nguyên trong Hình 18.
Dùng compa đo bán kính và vẽ lại các hình trong Hình 19.
Cho đường tròn (O), bán kính 5 cm và bốn điểm A, B, C, D thỏa mãn OA = 3 cm, OB = 4 cm, OC = 7 cm, OD = 5 cm. Hãy cho biết mỗi điểm A, B, C, D nằm trong, nằm trên hay nằm ngoài đường tròn (O).
Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm BC.
a) Chứng minh đường tròn tâm O bán kính OB’ đi qua B, C, C’;
b) So sánh độ dài hai đoạn thẳng BC và B’C’.
Cho tứ giác ABCD có \(\widehat B = \widehat D = {90^o}\).
a) Chứng minh bốn điểm A, B, C, D cùng nằm trên một đường tròn.
b) So sánh độ dài của AC và BD.
Cho hai đường tròn (O; 2 cm) và (A; 2 cm) cắt nhau tại C, D, điểm A nằm trên đường tròn tâm O (Hình 20).
a) Vẽ đường tròn (C; 2 cm)
b) Đường tròn (C; 2 cm) có đi qua hai điểm O và A không? Vì sao?
Cho hai đường tròn (A; 6 cm) và (B; 4 cm) cắt nhau tại C, D, AB = 8 cm. Gọi I, K lần lượt là giao điểm của hai đường tròn đã cho với đoạn thẳng AB (Hình 21).
a) Tính độ dài của các đoạn thẳng CA, CB, DA và DB.
b) Điểm I có phải là trung điểm của đoạn thẳng AB không?
c) Tính độ dài của đoạn thẳng IK.
Xác định vị trí tương đối giữa hai đường tròn (O;R) và (O’;R’) trong mỗi trường hợp sau:
a) OO’ = 18; R = 10; R’ = 6
b) OO’ = 2; R = 9; R’ = 3
c) OO’ = 13; R = 8; R’ = 5
d) OO’ = 17; R = 15; R’ = 4
Chứng minh bốn đỉnh của hình vuông ABCD có cạnh bằng 16 cm đều nằm trên một đường tròn. Tính bán kính của đường tròn này.
Cho tam giác ABC có AB = AC = 13 cm, Bc = 10 cm và có BH, CK là hai đường cao. Chứng minh:
a) Bốn điểm B, C, H, K cùng nằm trên đường tròn (O;R).
b) Điểm A nằm ngoài đường tròn (O; R).
Xác định vị trí tương đối của hai đường tròn (O; R) và (O’; R’) trong mỗi trường hợp sau:
a) OO’ = 7, R = 29, R’ = 4;
b) OO’ = 21, R = 44, R’ = 23;
c) OO’ = 15, R = 7, R’ = 8;
d) OO’ = 6, R = 24, R’ = 20;
Cho đường tròn (O; 8 cm) và hai điểm A, B nằm trên đường tròn thoả mãn AB = 6 cm. Vẽ đường kính MN sao cho hai đoạn thẳng MN và AB không có điểm chung. Gọi A’, B’ lần lượt là hai điểm đối xứng với A, B qua MN. Chứng minh:
a) ABB’A’ là hình thang cân.
b) Bốn điểm A, B, B’, A’ cùng nằm trên đường tròn (O; 8 cm).
Cho đường tròn (O) đường kính AB, vẽ dây CD vuông góc với AB tại M. Cho biết AM = 1 cm, CD = \(2\sqrt 3 \) cm. Tính
a) Bán kính đường tròn (O).
b) Số đo \(\widehat {CAB}\).
Cho hai điểm A, B trên đường tròn (O; R). Cho biết AB = 9 cm và khoảng cách từ O đến đường thẳng AB là OH = \(\frac{R}{2}\). Tính:
a) Số đo \(\widehat {OBH}\).
b) Bán kính R của đường tròn.
Tìm trục đối xứng của hình tạo bởi hai đường tròn (O) và (O’) trong Hình 12.
Cho hình vuông ABCD có cạnh bằng 4 cm.
a) Vẽ các đường tròn tâm A, B, C, D bán kính 2 cm.
b) Nêu nhận xét về vị trí giữa các cặp đường tròn (A; 2 cm) và (B; 2 cm), (A; 2 cm) và (C; 2cm).