Giải mục 2 trang 17, 18, 19, 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

Cho T là một phép thử và E là một biến cố liên quan tới phép thử T. Ta thực hiện phép thử T lặp lại n lần một cách độc lập. Ở mỗi lần thực hiện phép thử T, biến cố E có xác suất xuất hiện bằng p, tức là \(P\left( E \right) = p\), 0 < p < 1. Gọi X là số lần xuất hiện biến cố E trong n lần thực hiện lặp lại phép thử T. Tính \(P\left( {X = k} \right)\) với k ∈ {0; 1; …; n}.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 2

Trả lời câu hỏi Hoạt động 2 trang 17 Chuyên đề học tập Toán 12 Kết nối tri thức

Cho T là một phép thử và E là một biến cố liên quan tới phép thử T. Ta thực hiện phép thử T lặp lại n lần một cách độc lập. Ở mỗi lần thực hiện phép thử T, biến cố E có xác suất xuất hiện bằng p, tức là \(P\left( E \right) = p\), 0 < p < 1. Gọi X là số lần xuất hiện biến cố E trong n lần thực hiện lặp lại phép thử T. Tính \(P\left( {X = k} \right)\) với k ∈ {0; 1; …; n}.

Phương pháp giải:

Sử dụng công thức Bernoulli

Lời giải chi tiết:

Biến cố \(\left\{ {X = k} \right\}\) là: “ Trong \(n\) lần thực hiện phép thử T, biến cố E xuất hiện đúng \(k\) lần”

Vậy \(P(X = k)\) là xác suất để trong \(n\) lần thực hiện phép thử T, biến cố E xuất hiện đúng \(k\) lần. Theo công thức Bernoulli ta có \(P(X = k) = C_n^k.{p^k}.{(1 - p)^{n - k}}\)

Câu hỏi

Trả lời câu hỏi trang 17 Chuyên đề học tập Toán 12 Kết nối tri thức

Viết bảng phân bố xác suất của biến ngẫu nhiên có phân bố Bernoulli

Phương pháp giải:

Dựa vào khái niệm biến ngẫu nhiên có phân bố Bernoulli.

Lời giải chi tiết:

Gọi X là biến ngẫu nhiên có phân bố Bernoulli \( \Rightarrow X \sim Ber(p)\)

Các giá trị của X có thể nhận được thuộc tập {0; 1}. 

\(\begin{array}{l}P(X = 0) = C_1^0.{p^0}.{(1 - p)^{1 - 0}} = 1 - p\\P(X = 1) = C_1^1.{p^1}.{(1 - p)^{1 - 1}} = p\end{array}\)

Ta có bảng bảng phân bố xác suất của biến ngẫu nhiên X:

Luyện tập 3

Trả lời câu hỏi Luyện tập 3 trang 18 Chuyên đề học tập Toán 12 Kết nối tri thức

Khi tham gia một một trò chơi, người chơi gieo xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 5 lần. Mỗi lần gieo nếu số chấm xuất hiện lớn hơn 4 thì người chơi được 10 điểm. Tính xác suất để người chơi nhận được ít nhất 30 điểm.

Phương pháp giải:

Áp dụng phân bố nhị thức để giải bài tập.

Lời giải chi tiết:

Phép thử T là: “Gieo một con xúc xắc cân đối, đồng chất”.

Biến cố E: “Số chấm xuất hiện lớn hơn 4”. \( \Rightarrow P(E) = \frac{1}{3}\)

X là số lần xuất hiện biến cố E trong 5 lần thực hiện lặp lại phép thử T.

Khi đó \(X \sim B\left( {5;\frac{1}{3}} \right)\)

Người chơi nhận được ít nhất 30 điểm khi số lần xuất hiện số chấm lớn hơn 4 ít nhất 3 lần. Vậy người chơi nhận được ít nhất 30 điểm khi \(X \ge 3\).

\(\begin{array}{l}P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)\\{\rm{                 = }}C_5^3.{\left( {\frac{1}{3}} \right)^3}.{\left( {\frac{2}{3}} \right)^2} + C_5^4.{\left( {\frac{1}{3}} \right)^4}.{\left( {\frac{2}{3}} \right)^1} + C_5^5.{\left( {\frac{1}{3}} \right)^5}.{\left( {\frac{2}{3}} \right)^0} \approx 0,21\end{array}\)

Vận dụng

Trả lời câu hỏi Vận dụng trang 20 Chuyên đề học tập Toán 12 Kết nối tri thức

Giải quyết bài toán ở tình huống mở đầu.

Phương pháp giải:

Áp dụng phân bố nhị thức và công thức tính kì vọng của biến ngẫu nhiên có phân bố nhị thức

Lời giải chi tiết:

Gọi X là số câu trả lời đúng của An. Khi đó \(X \sim B(10;0,25)\)

Số điểm trung bình là \(E\left( X \right)\).

Vậy trung bình An nhận được số điểm trung bình là:

\(E(X) = 10.0,25 = 2,5\) (Điểm)

b) An vượt qua bài thi khi làm đúng ít nhất 5 câu tức là khi X ≥ 5.

Theo chú ý về phân bố nhị thức ta có:

\(\begin{array}{l}P(X \ge 5) = P(X = 5) + P(X = 6) + ... + P(X = 10)\\{\rm{                 = }}C_{10}^5.{\left( {\frac{1}{4}} \right)^5}.{\left( {\frac{3}{4}} \right)^5} + C_{10}^6.{\left( {\frac{1}{4}} \right)^6}.{\left( {\frac{3}{4}} \right)^4} + ... + C_{10}^{10}.{\left( {\frac{1}{4}} \right)^{10}}.{\left( {\frac{3}{4}} \right)^0}{\rm{ = }}0,0781\end{array}\)

  • Giải bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Tại một nhà máy sản xuất linh kiện điện tử, các linh kiện được sắp xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu?

  • Giải bài 1.7 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Một bài thi trắc nghiệm gồm 10 câu hỏi, mỗi câu hỏi có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được 4 điểm, mỗi câu trả lời sai trừ 1 điểm. Một thí sinh làm bài bằng cách ở mỗi câu hỏi chọn ngẫu nhiên một phương án trả lời. Tính xác suất để thí sinh đó sau khi hoàn thành hết 10 câu trong bài thi, có kết quả: a) 15 điểm; b) Bị âm điểm

  • Giải bài 1.8 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Trong một trò chơi, mỗi ván người chơi gieo đồng thời 3 xúc xắc cân đối, đồng chất. Nếu có ít nhất 2 xúc xắc xuất hiện mặt 6 chấm thì người chơi giành chiến thắng ván chơi đó. Bác Hưng tham gia chơi 3 ván. Tính xác suất để bác Hưng thắng ít nhất 2 ván.

  • Giải bài 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Màu hạt của đậu Hà Lan có hai kiểu hình: màu vàng và màu xanh. Có hai gene ứng với hai kiểu hình này là allele trội A và allele lặn a. Khi cho lai hai cây đậu Hà Lan, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ để hình thành một cặp gene. Bốn bạn An, Bình, Sơn và Dương, mỗi bạn độc lập với nhau, thực hiện phép thử là lai hai cây đậu Hà Lan, trong đó cây bố có kiểu gene là Aa, cây mẹ có kiểu gene là Aa. Gọi X là số cây con có hạt màu vàng trong số 4 cây con. a) Lập bảng ph

  • Giải bài 1.10 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức

    Trong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng. a) Gọi tên phân bố xác suất biến ngẫu nhiên X. b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng. c) Tính kì vọng, phương sai và độ lệch chuẩn của X.

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close