Giải bài 5 trang 85 vở thực hành Toán 8 tập 2Cho $\Delta ABC\backsim \Delta MNP$. Biết rằng $6\widehat{A}=2\widehat{M}=3\widehat{C}$. Hãy tính số đo các góc của hai tam giác ABC và MNP. Quảng cáo
Đề bài Cho $\Delta ABC\backsim \Delta MNP$. Biết rằng $6\widehat{A}=2\widehat{M}=3\widehat{C}$. Hãy tính số đo các góc của hai tam giác ABC và MNP. Phương pháp giải - Xem chi tiết Dựa vào tính chất tổng ba góc của một tam giác, dãy tỉ số bằng nhau, tính chất của hai tam giác đồng dạng để tính số đo các góc của hai tam giác. Lời giải chi tiết Do $\Delta ABC\backsim \Delta MNP$ nên $\widehat{M}=\widehat{A},\widehat{N}=\widehat{B},\widehat{P}=\widehat{C}$. Như vậy $6\widehat{A}=2\widehat{B}=3\widehat{C}$. Suy ra: $\frac{\widehat{A}}{1}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{6}={{30}^{o}}$. Do vậy $\widehat{M}=\widehat{A}={{30}^{o}},\widehat{N}=\widehat{B}={{90}^{o}},\widehat{P}=\widehat{C}={{60}^{0}}$.
Quảng cáo
|