Giải bài 27 trang 75 sách bài tập toán 12 - Cánh diều

Rađa của một trung tâm kiểm soát không lưu sân bay có phạm vi theo dõi 500 km. Chọn hệ trục toạ độ (Oxyz) với gốc (O) trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (left( {Oxy} right)) trùng với mặt đất, trục (Ox) hướng về phía tây, trục (Oy) hướng về phía nam và trục (Oz) hướng thẳng đứng lên trời như Hình 18, trong đó đơn vị trên mỗi trục tính theo kilômét. Hỏi rađa trung tâm kiểm soát không lưu có thể phát hiện được máy bay tại vị trí (A) có toạ độ (left( {

Quảng cáo

Đề bài

Rađa của một trung tâm kiểm soát không lưu sân bay có phạm vi theo dõi 500 km. Chọn hệ trục toạ độ \(Oxyz\) với gốc \(O\) trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) hướng về phía tây, trục \(Oy\) hướng về phía nam và trục \(Oz\) hướng thẳng đứng lên trời như Hình 18, trong đó đơn vị trên mỗi trục tính theo kilômét.

Hỏi rađa trung tâm kiểm soát không lưu có thể phát hiện được máy bay tại vị trí \(A\) có toạ độ \(\left( { - 200;400;200} \right)\) đối với hệ trục toạ độ trên không?

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

Lời giải chi tiết

Khoảng cách từ trung tâm kiểm soát không lưu tới máy bay tại vị trí \(A\) bằng độ dài \(OA\):

\(OA = \left| {\overrightarrow {OA} } \right| = \sqrt {{{\left( { - 200} \right)}^2} + {{400}^2} + {{200}^2}}  = 200\sqrt 6  < 500\).

Vì vậy rađa trung tâm kiểm soát không lưu có thể phát hiện được máy bay tại vị trí \(A\) có toạ độ \(\left( { - 200;400;200} \right)\).

  • Giải bài 26 trang 75 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho (Mleft( {2;2; - 2} right),Nleft( { - 3;5;1} right),Pleft( {1; - 1; - 2} right)). a) Chứng minh rằng ba điểm (M,N,P) không thẳng hàng. b) Tính chu vi tam giác (MNP). c) Tính (cos widehat {NMP}).

  • Giải bài 25 trang 75 sách bài tập toán 12 - Cánh diều

    Cho hai vectơ và (overrightarrow v = left( {1;1;5} right)). Hãy chỉ ra toạ độ của một vectơ (overrightarrow {rm{w}} ) vuông góc với cả hai vectơ (overrightarrow u ) và (overrightarrow v ).

  • Giải bài 24 trang 74 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho (Aleft( {1;2; - 1} right),Bleft( {2; - 1;3} right),Cleft( { - 4;7;5} right)). a) Toạ độ của (overrightarrow {AB} = left( {1; - 3;4} right),overrightarrow {AC} = left( { - 5;5;6} right)). b) (AB = left| {overrightarrow {AB} } right| = sqrt {{1^2} + {{left( { - 3} right)}^2} + {4^2}} = sqrt {26} ,AC = left| {overrightarrow {AC} } right| = sqrt {{{left(

  • Giải bài 23 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho (overrightarrow a = left( {0;2;2} right)) và (overrightarrow b = left( {3; - 3;0} right)). Góc giữa hai vectơ (overrightarrow a ) và (overrightarrow b ) bằng A. 9. B. 3. C. 5. D. 4.

  • Giải bài 22 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho điểm (Aleft( { - 2; - 1;4} right)) và (Bleft( {1; - 3; - 1} right)). Độ dài đoạn thẳng (AB) bằng: A. (sqrt {26} ). B. (sqrt {22} ). C. (sqrt {38} ). D. (sqrt {34} ).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close