Giải bài 2.7 trang 38 SGK Toán 8 - Cùng khám pháTìm đa thức thích hợp cho mỗi ô ?: Quảng cáo
Đề bài Tìm đa thức thích hợp cho mỗi ô ?: a) \(\frac{{{x^2} - x}}{{\left( {x - 1} \right)\left( {x + 3} \right)}} = \frac{?}{{x + 3}}\) b) \(\frac{{x + y}}{?} = \frac{{{x^2} + 2xy + {y^2}}}{{7\left( {{x^2} - {y^2}} \right)}}\) Phương pháp giải - Xem chi tiết Tìm các nhân tử chung sau đó chia phân thức cho nhân tử chung đó để tìm được phân thức mới bằng phân thức đã cho. Lời giải chi tiết a) Ta thấy cả tử và mẫu của phân thức \(\frac{{{x^2} - x}}{{\left( {x - 1} \right)\left( {x + 3} \right)}}\) đều có nhân tử chung là \(x - 1\). Chia phân thức cho \(x - 1\), ta có: \(\frac{{{x^2} - x}}{{\left( {x - 1} \right)\left( {x + 3} \right)}}:\left( {x - 1} \right) = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 3} \right)}}:\left( {x - 1} \right) = \frac{{x + 1}}{{x + 3}}\) Vậy đa thức thích hợp là \(x + 1\). b) Ta thấy cả tử và mẫu của phân thức \(\frac{{{x^2} + 2xy + {y^2}}}{{7\left( {{x^2} - {y^2}} \right)}}\) đều có nhân tử chung là \(x + y\). Chia phân thức cho \(x + y\), ta có: \(\frac{{{x^2} + 2xy + {y^2}}}{{7\left( {{x^2} - {y^2}} \right)}}:\left( {x + y} \right) = \frac{{{{\left( {x + y} \right)}^2}}}{{7\left( {x + y} \right)\left( {x - y} \right)}}:\left( {x + y} \right) = \frac{{\left( {x + y} \right)}}{{7\left( {x - y} \right)}}\) Vậy đa thức thích hợp là \(7\left( {x - y} \right)\)
Quảng cáo
|