Giải bài 25 trang 76 sách bài tập toán 11 - Cánh diều

Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày)

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là \(g\left( t \right) = 45{t^2} - {t^3}\) (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm \({t_1}\), \({t_2}\) là \({V_{tb}} = \frac{{g\left( {{t_2}} \right) - g\left( {{t_1}} \right)}}{{{t_2} - {t_1}}}\). Tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và cho biết ý nghĩa kết quả tìm được.

Phương pháp giải - Xem chi tiết

Thay hàm \(g\left( t \right) = 45{t^2} - {t^3}\) và giá trị \(g\left( {10} \right)\) vào biểu thức \(\frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\) và dùng các định lí về giới hạn hàm số để tính \(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}}\).

Lời giải chi tiết

Ta có \(g\left( {10} \right) = {45.10^2} - {10^3}\). Như vậy

\(\mathop {\lim }\limits_{t \to 10} \frac{{g\left( t \right) - g\left( {10} \right)}}{{t - 10}} = \mathop {\lim }\limits_{t \to 10} \frac{{45{t^2} - {t^3} - \left( {{{45.10}^2} - {{10}^3}} \right)}}{{t - 10}} = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {{t^2} - {{10}^2}} \right) - \left( {{t^3} - {{10}^3}} \right)}}{{t - 10}}\)

\( = \mathop {\lim }\limits_{t \to 10} \frac{{45\left( {t - 10} \right)\left( {t + 10} \right) - \left( {t - 10} \right)\left( {{t^2} + 10t + {{10}^2}} \right)}}{{t - 10}}\)

\( = \mathop {\lim }\limits_{t \to 10} \left[ {45\left( {t + 10} \right) - \left( {{t^2} + 10t + {{10}^2}} \right)} \right] = 45\left( {10 + 10} \right) - \left( {{{10}^2} + {{10}^2} + {{10}^2}} \right) = 600\)

Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm \(t = 10\) (ngày) là 600 người/ngày.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close