Giải bài 25 trang 74 sách bài tập toán 11 - Cánh diềuMột mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bởi hàm số Quảng cáo
Đề bài Một mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bởi hàm số \(Q\left( t \right) = {10^{ - 5}}sin\left( {2000t + \frac{\pi }{3}} \right),\)trong đó \(t > 0,{\rm{ }}t\) tính bằng giây, Q tính bằng Coulomb. Tính cường độ dòng điện tức thời I (A) trong mạch tại thời điểm \(t = \frac{\pi }{{1500}}\left( s \right)\), biết \(I\left( t \right){\rm{ }} = {\rm{ }}Q'\left( t \right).\) Phương pháp giải - Xem chi tiết Cường độ dòng điện tức thời I (A) trong mạch tại thời điểm \(t\) là: \(I\left( t \right){\rm{ }} = {\rm{ }}Q'\left( t \right).\) Lời giải chi tiết Cường độ dòng điện tức thời I (A) trong mạch tại thời điểm \(t\) là: \(I\left( t \right){\rm{ }} = {\rm{ }}Q'\left( t \right) = {10^{ - 5}}.2000\cos \left( {2000t + \frac{\pi }{3}} \right) = 0,02\cos \left( {2000t + \frac{\pi }{3}} \right).\) Cường độ dòng điện tức thời I (A) trong mạch tại thời điểm \(t = \frac{\pi }{{1500}}\left( s \right)\) là: \(I\left( {\frac{\pi }{{1500}}} \right){\rm{ }} = {\rm{ }}Q'\left( {\frac{\pi }{{1500}}} \right) = 0,02cos\left( {2000.\frac{\pi }{{1500}} + \frac{\pi }{3}} \right) = 0,02cos\frac{{5\pi }}{3} = 0,01\left( {\rm{A}} \right).\)
Quảng cáo
|