Giải bài 2.13 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thứcVới giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Euler? Có một đường đi Euler? Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Euler? Có một đường đi Euler? Phương pháp giải - Xem chi tiết Trong đồ thị, một đường đi được gọi là đường đi Euler nếu đường đi đó đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng 1 lần. Nếu chu trình là đường đi Euler thì chu trình đo được gọi là chu trình Euler. Lời giải chi tiết Đồ thị đầy đủ \({K_n}\) có \(n{\rm{ }} \ge {\rm{ }}2,{\rm{ }}n\; \in \;\mathbb{N}.\) Đồ thị đầy đủ \({K_n}\) là đồ thị liên thông. Mỗi đỉnh của \({K_n}\) đều có bậc là n – 1. +) Theo định lí Euler, Kn có chu trình Euler khi Kn liên thông (đã thỏa mãn) và mọi đỉnh của Kn đều có bậc chẵn, điều này có nghĩa để Kn có một chu trình Euler thì n – 1 phải là số chẵn hay n phải là số lẻ, tức là \(n{\rm{ }} = {\rm{ }}2k{\rm{ }} + {\rm{ }}1{\rm{ }}(k\; \in \;{\mathbb{N}^*}).\) Vậy với \(\;n{\rm{ }} = {\rm{ }}2k{\rm{ }} + {\rm{ }}1{\rm{ }}(k\; \in \;{\mathbb{N}^*})\) thì đồ thị đầy đủ Kn có một chu trình Euler. +) Đồ thị Kn có một đường đi Euler từ A đến B khi và chỉ khi Kn liên thông và mọi đỉnh của Kn đều có bậc chẵn, chỉ trừ A và B có bậc lẻ. Mà mọi đỉnh của Kn đều có bậc là n – 1, nghĩa là mọi đỉnh của Kn đều có bậc chẵn hoặc đều có bậc lẻ. - Với n = 2, ta có K2 có 2 đỉnh đều có bậc là 1 (là bậc lẻ) nên ta có đường đi Euler từ đỉnh này qua đỉnh còn lại. - Với n > 2, n ∈ ℕ* thì mọi đỉnh của Kn đều có bậc cùng chẵn hoặc cùng lẻ lớn hơn 2, do đó không thỏa mãn điều kiện để Kn có đường đi Euler. Vậy đồ thị đầy đủ Kn có một đường đi Euler khi n = 2.
Quảng cáo
|