Giải bài 17 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.

Quảng cáo

Đề bài

Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.

Phương pháp giải - Xem chi tiết

Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'}  = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.

Lời giải chi tiết

⦁ Ta xét Hình 4a:

Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.

Ta có AA’ cắt BB’ tại O.

Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.

Suy ra \(\overrightarrow {OA'}  = k\overrightarrow {OA} \), với k > 0.

Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right){\rm{ }} = {\rm{ }}A',{\rm{ }}OA'{\rm{ }} = {\rm{ }}k.OA.\)

Vì vậy \(k = \frac{{OA'}}{{OA}}\)

Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:

\(\widehat {AOB}\)  chung;

\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)

Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,\,(g.g)\)

Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = k\)

Vì vậy \(OB' = {\rm{ }}k.OB.\)

Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm cùng phía đối với O.

Suy ra \(\overrightarrow {OB'}  = k\overrightarrow {OB} \)

Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right){\rm{ }} = {\rm{ }}B'.\)

Vậy phép vị tự tâm O, tỉ số \(k = \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.

⦁ Ta xét Hình 4b:

Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.

Ta có AA’ cắt BB’ tại O.

Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm khác phía đối với O.

Suy ra \(\overrightarrow {OA'}  = k\overrightarrow {OA} \) với k < 0.

Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right) = A',{\rm{ }}OA' = \left| k \right|.OA.\)

Vì vậy \(k =  - \frac{{OA'}}{{OA}}\)

Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:

\(\widehat {A'OB'} = \widehat {AOB}\)  (đối đỉnh);

\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)

Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,(g.g)\)

Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = |k|\)

Vì vậy \(\;OB'{\rm{ }} = {\rm{ }}\left| k \right|.OB.\)

Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm khác phía đối với O.

Suy ra \(\overrightarrow {OB'}  = k\overrightarrow {OB} \)

Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right) = B'.\)

Vậy phép vị tự tâm O, tỉ số \(k =  - \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close