Giải bài 1.5 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thứcTrong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. Quảng cáo
Đề bài Trong một chiếc hộp có 10 quả cầu có kích thước và khối lượng giống nhau, trong đó có 4 quả ghi số 1; 3 quả ghi số 2; 2 quả ghi số 3 và 1 quả ghi số 4. Lấy ngẫu nhiên đồng thời hai quả cầu rồi cộng hai số trên hai quả cầu với nhau. Gọi X là kết quả thu được. Lập bảng phân bố xác suất của X. Phương pháp giải - Xem chi tiết Bước 1: Tính xác suất của các biến cố Bước 2: Lập bảng phân bố xác suất Lời giải chi tiết X là kết quả thu được khi cộng hai số trên hai quả cầu với nhau. Khi đó giá trị của X thuộc tập {2; 3; 4; 5; 6; 7}. Gọi \({A_{ij}}\) là biến cố: “Lấy ngẫu nhiên đồng thời 2 quả cầu trong đó một quả cầu ghi số i và một quả cầu ghi số j”. với \(1 \le i \le 4;1 \le j \le 4\) \(\begin{array}{l}P\left( {X = 2} \right) = P({A_{11}}) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{6}{{45}}\\P\left( {X = 3} \right) = P({A_{12}}) = \frac{{C_4^1.C_3^1}}{{C_{10}^2}} = \frac{{12}}{{45}}\\P\left( {X = 4} \right) = P({A_{13}}) + P({A_{22}}) = \frac{{C_4^1.C_2^1}}{{C_{10}^2}} + \frac{{C_3^2}}{{C_{10}^2}} = \frac{{11}}{{45}}\\P\left( {X = 5} \right) = P({A_{14}}) + P({A_{23}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1.C_2^1}}{{C_{10}^2}} = \frac{{10}}{{45}}\\P\left( {X = 6} \right) = P({A_{33}}) + P({A_{24}}) = \frac{{C_4^1.C_1^1}}{{C_{10}^2}} + \frac{{C_3^1C_2^1}}{{C_{10}^2}} = \frac{4}{{45}}\\P\left( {X = 7} \right) = P({A_{34}}) = \frac{{C_2^1.C_1^1}}{{C_{10}^2}} = \frac{2}{{45}}\end{array}\) Bảng phân bố xác suất của X là
Quảng cáo
|