Đề kiểm tra 15 phút - Đề số 2 - Chương 1 - Hình học 8

Giải Đề kiểm tra 15 phút - Đề số 2 - Chương 1 - Hình học 8

Quảng cáo

Đề bài

Cho tứ giác ABCD có AB = CD. Chứng minh rằng đường thẳng đi qua trung điểm của hai đường chéo tạo với AB và CD các góc bằng nhau.

Phương pháp giải - Xem chi tiết

Sử dụng: 

- Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

- Định lí: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết

Gọi I, M, N lần lượt là trung điểm của AD, AC và BD ; MN cắt AB, CD theo thứ tự ở E và F. Khi đó MI là đường trung bình của ΔACD và NI là đường trung bình của ΔABD

Nên MI//CDMI=12CD. 

NI//ABNI=12AB, mà AB=CD(gt)

MI=NI hay ΔIMN cân tại I

^IMN=^INM 

^IMN+^IMF=1800

  ^INM+^INF=1800

^IMF=^INF(1)

Lại có IN//AB (cmt) ^INM=^BEN (2) (so le trong).

IM//CD ^IMN=^CFM (3) (so le trong)

Từ (1), (2), (3) suy ra ^BEN=^CFN  (đpcm)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

close