Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 2 - Đại số 8Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 2 - Đại số 8 Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1. Rút gọn phân thức: a) \({{2x - 10} \over {25 - {x^2}}}\) b) \({{4{y^2} - 4y + 1} \over {2 - 4y}}.\) Bài 2. Tìm P, biết: \(a\left( {P - a - 4} \right) - 2P = 4,\) với \(a \ne 2.\) LG bài 1 Phương pháp giải: Phân tích các đa thức trên tử và dưới mẫu thành nhân tử rồi rút gọn các phân thức Lời giải chi tiết: a) \({{2x - 10} \over {25 - {x^2}}} = {{ - \left( {10 - 2x} \right)} \over {25 - {x^2}}} = {{ - 2\left( {5 - x} \right)} \over {\left( {5 - x} \right)\left( {5 + x} \right)}} = {{ - 2} \over {x + 5}}.\) b) \({{4{y^2} - 4y + 1} \over {2 - 4y}} = {{{{\left( {2y - 1} \right)}^2}} \over {2\left( {1 - 2y} \right)}} = {{{{\left( {1 - 2y} \right)}^2}} \over {2\left( {1 - 2y} \right)}} = {{1 - 2y} \over 2}.\) LG bài 2 Phương pháp giải: Nhân phá ngoặc, nhóm các hạng tử chứa P, đặt nhân tử chung và rút P theo a Lời giải chi tiết: Ta có: \(a\left( {P - a + 4} \right) - 2P = 4\) \(\Rightarrow aP - {a^2} + 4a - 2P = 4\) \( \Rightarrow \left( {a - 2} \right)P = {a^2} - 4a + 4\) \(\Rightarrow \left( {a - 2} \right)P = {\left( {a - 2} \right)^2}\) \( \Rightarrow P = {{{{\left( {a - 2} \right)}^2}} \over {a - 2}} \) \(\Rightarrow P = a - 2.\) Loigiaihay.com
Quảng cáo
|