tuyensinh247

Câu hỏi:

Giá trị của \(D = \lim \frac{{\sqrt {{n^2} + 1}  - \sqrt[3]{{3{n^3} + 2}}}}{{\sqrt[4]{{2{n^4} + n + 2}} - n}}\) bằng:

  • A \( + \infty \)      
  • B \( - \infty \)       
  • C \(\frac{{1 - \sqrt[3]{3}}}{{\sqrt[4]{2} - 1}}\)           
  • D \(1\)

Phương pháp giải:

Khi tìm \(\lim \frac{{f(n)}}{{g(n)}}\) ta chia cả tử và mẫu cho \({n^k}\), trong đó \(k\) là bậc lớn nhất của tử và mẫu.

\(\lim \frac{1}{{{n^k}}} = 0\) với \(k \in \mathbb{N}*\)

Lời giải chi tiết:

Ta có: \(D = \lim \frac{{n\left( {\sqrt {1 + \frac{1}{{{n^2}}}}  - \sqrt[3]{{3 + \frac{2}{{{n^3}}}}}} \right)}}{{n\left( {\sqrt[4]{{2 + \frac{1}{{{n^3}}} + \frac{2}{{{n^4}}}}} - 1} \right)}} = \frac{{1 - \sqrt[3]{3}}}{{\sqrt[4]{2} - 1}}\).

Chọn C.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay