Câu hỏi:

Giá trị của  \(E = \lim \frac{{\sqrt {{n^4} + 2n}  + 1}}{{n + 2}}\) bằng:

  • A \( + \infty \)      
  • B \( - \infty \)                
  • C \(0\)
  • D \(1\)

Phương pháp giải:

Khi tìm \(\lim \frac{{f(n)}}{{g(n)}}\) ta  chia cả tử và mẫu cho \({n^k}\), trong đó \(k\) là bậc lớn nhất của tử và mẫu.

\(\lim \frac{1}{{{n^k}}} = 0\) với \(k \in \mathbb{N}*\)

Chú ý: \(\left[ \begin{array}{l}\lim \frac{0}{a} = 0\\\lim \frac{a}{0} = \infty \end{array} \right.\) (a là số bất kì, \(a \in R\))

Lời giải chi tiết:

\(E = \lim \frac{{\sqrt {1 + \frac{2}{{{n^3}}}}  + \frac{1}{{{n^2}}}}}{{\frac{1}{n} + \frac{2}{{{n^2}}}}} =  + \infty \)

Do \(\lim \left( {\sqrt {1 + \frac{2}{{{n^3}}}}  + \frac{1}{{{n^2}}}} \right) = 1\) ; \(\lim \left( {\frac{1}{n} + \frac{2}{{{n^2}}}} \right) = 0\) và \(\frac{1}{n} + \frac{2}{{{n^2}}} > 0\,\,\,\,\,\,\forall n \in {N^*}\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay