Môn Toán - Lớp 12
40 bài tập trắc nghiệm sự đồng biến nghịch biến của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi:
Tìm tất cả các giá trị nguyên dương nhỏ hơn 5 của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} + \left( {m - 1} \right){x^2} + \left( {2m - 3} \right)x - \dfrac{2}{3}\) đồng biến trên \(\left( {1; + \infty } \right)\).
3
Phương pháp giải:
+) Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {1; + \infty } \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\).
+) Cô lập m, đưa bất phương trình về dạng \(f\left( x \right) \ge m\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right)\).
Lời giải chi tiết:
Ta có \(y' = {x^2} + 2\left( {m - 1} \right)x + 2m - 3\).
Để hàm số đồng biến trên \(\left( {1; + \infty } \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\)
\(\begin{array}{l} \Leftrightarrow {x^2} + 2\left( {m - 1} \right)x + 2m - 3 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\\ \Leftrightarrow {x^2} + 2m\left( {x + 1} \right) - 2x - 3 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\\ \Leftrightarrow {x^2} - 2x - 3 \ge - 2m\left( {x + 1} \right)\,\,\forall x \in \left( {1; + \infty } \right)\end{array}\)
Do \(x \in \left( {1; + \infty } \right) \Rightarrow x + 1 > 0 \Leftrightarrow - 2m \le \dfrac{{{x^2} - 2x - 3}}{{x + 1}} = f\left( x \right)\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow - 2m \le \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right)\)
Xét hàm số \(f\left( x \right) = \dfrac{{{x^2} - 2x - 3}}{{x + 1}}\) trên \(\left[ {1; + \infty } \right)\) ta có:
\(f'\left( x \right) = \dfrac{{\left( {2x - 2} \right)\left( {x + 1} \right) - {x^2} + 2x + 3}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{{x^2} + 2x + 1}}{{{{\left( {x + 1} \right)}^2}}} = 1 > 0 \Rightarrow \) Hàm số đồng biến trên \(\left[ {1; + \infty } \right)\)
\( \Rightarrow \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = - 2 \Leftrightarrow - 2m \le - 2 \Leftrightarrow m \ge 1\).
Kết hợp điều kiện đề bài \(m \in Z,\,\,m < 5 \Rightarrow m \in \left\{ {1;2;3;4} \right\}\).
Chọn D.