Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị hàm số đường cong trong hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt.
Phương pháp giải:
Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\).
Lời giải chi tiết:
Từ đồ thị hàm số \(y = f\left( x \right)\) ta có đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) như hình bên:
Số nghiệm của phương trình \(\left| {f\left( x \right)} \right| = m\) bằng số giao điểm của đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) và đường thẳng \(y = m\)
\( \Rightarrow \)Để phương trình \(\left| {f\left( x \right)} \right| = m\) có 4 nghiệm phân biệt thì \(1 < m < 3\).
Chọn: D