Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(y' = f'\left( x \right) = - {x^2} - 3x + 10\). Tìm mệnh đề đúng trong các mệnh đề dưới đây:
Phương pháp giải:
Nếu \(f'\left( x \right) < 0\,\,\forall x \in \left( {a;b} \right)\) thì hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {a;b} \right)\).
Nếu \(f'\left( x \right) > 0\,\,\forall x \in \left( {a;b} \right)\) thì hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;b} \right)\).
Lời giải chi tiết:
Ta có: \(y' = f'\left( x \right) = - {x^2} - 3x + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 5\end{array} \right.\)
\(\begin{array}{l}f'\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - 5} \right) \cup \left( {2; + \infty } \right)\\f'\left( x \right) > 0 \Leftrightarrow x \in \left( { - 5;2} \right)\end{array}\)
\( \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( { - 5;2} \right)\), nghịch biến trên mỗi khoảng \(\left( { - \infty ; - 5} \right)\) và \(\left( {2; + \infty } \right)\)
Chọn D.