Môn Toán - Lớp 12
40 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ nhận biết, thông hiểu
Câu hỏi:
Tìm số đường tiệm cận của đồ thị hàm số \(y=\frac{\sqrt{9{{x}^{2}}+6x+4}}{x+2}\)
\(x=-2\) và \(y=-3\)
\(x=-2\) và \(y=3\)
\(y=3\) và \(x=2\)
Phương pháp giải:
Nếu \(\underset{x\to +\infty }{\mathop{\lim }}\,y=a\) hoặc \(\underset{x\to -\infty }{\mathop{\lim }}\,y=a\Rightarrow \) Đồ thị hàm số có hai TCN là \(y=a\).
Nếu \(\underset{x\to {{x}_{0}}^{+}}{\mathop{\lim }}\,y=\infty ;\,\,\underset{x\to {{x}_{0}}^{-}}{\mathop{\lim }}\,y=\infty \Rightarrow \) Đồ thị hàm số có hai TCĐ là \(x={{x}_{0}}\).
Lời giải chi tiết:
TXĐ: \(D=R\backslash \left\{ -2 \right\}\)
Ta có \(\underset{x\to +\infty }{\mathop{\lim }}\,y=3;\,\,\underset{x\to -\infty }{\mathop{\lim }}\,y=-3\Rightarrow \) Đồ thị hàm số có hai TCN là \(y=3\) và \(y=-3\)
\(\underset{x\to {{\left( -2 \right)}^{+}}}{\mathop{\lim }}\,y=+\infty ;\,\,\underset{x\to {{\left( -2 \right)}^{-}}}{\mathop{\lim }}\,y=-\infty \Rightarrow \) Đồ thị hàm số có hai TCĐ là \(x=-2\).
Chọn D.