Câu hỏi:
Cho số phức \(z\) thỏa mãn \(\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i\). Chọn khẳng định đúng?
Phương pháp giải:
Chuyến vế, lấy môđun hai vế, đưa về phương trình trùng phương.
Lời giải chi tiết:
\(\begin{align} & \,\,\,\,\,\left( 3+i \right)\left| z \right|=\frac{-2+14i}{z}+1-3i \\ & \Leftrightarrow \left( 3+i \right)\left| z \right|-1+3i=\frac{-2+14i}{z} \\ & \Leftrightarrow \left( 3\left| z \right|-1 \right)+\left( \left| z \right|+3 \right)i=\frac{-2+14i}{z} \\ \end{align}\)
Lấy mođun hai vế ta có : \(\sqrt{9{{\left| z \right|}^{2}}-6\left| z \right|+1+{{\left| z \right|}^{2}}+6\left| z \right|+9}=\frac{10\sqrt{2}}{\left| z \right|}\)
\( \Leftrightarrow 10{\left| z \right|^2} + 10 = \frac{{200}}{{{{\left| z \right|}^2}}} \Leftrightarrow {\left| z \right|^4} + {\left| z \right|^2} - 20 = 0 \Leftrightarrow {\left| z \right|^2} = 4 \Rightarrow \left| z \right| = 2 \in \left( {\frac{7}{4};\frac{{11}}{5}} \right)\)
Chọn D.