Câu hỏi:
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị \(\left( C \right)\) của hàm số \(y={{x}^{4}}-2{{m}^{2}}{{x}^{2}}+{{m}^{4}}+5\) có ba điểm cực trị, đồng thời ba điểm cực trị cùng với gốc tọa độ \(O\) tạo thành một tứ giác nội tiếp. Tìm số phần tử của \(S.\)
Phương pháp giải:
Xác định tọa độ ba điểm cực trị của đồ thị hàm số trùng phương và sử dụng điều kiện tứ giác nội tiếp để tìm giá trị tham số m
Lời giải chi tiết:
Ta có \({y}'=4{{x}^{3}}-4{{m}^{2}}x;\,\,{y}'=0\Leftrightarrow {{x}^{3}}-{{m}^{2}}x=0\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=\pm \,m \\ \end{align} \right..\)
Để hàm số đã cho có 3 điểm cực trị khi và chỉ khi \(m\ne 0.\)
Khi đó, gọi \(A\left( 0;{{m}^{4}}+5 \right),\)\(B\left( -\,m;5 \right),\,\,C\left( m;5 \right)\) là tọa độ ba điểm cực trị.
Gọi \(I\) là tâm đường tròn ngoại tiếp tứ giác \(OBAC\). Vì OA là trung trực của BC \(\Rightarrow \,\,I\in BC\Rightarrow I\in Oy\Rightarrow \,\,I\left( 0;a \right).\) I là tâm đường tròn ngoại tiếp tứ giác OBAC $\Rightarrow IA=IO$
\(\Rightarrow I\) là trung điểm của \(OA\)\(\Rightarrow \,\,I\left( 0;\frac{{{m}^{4}}+5}{2} \right)\) mà \(OI=IB\) nên suy ra
\(\frac{{{m}^{4}}+5}{2}=\sqrt{{{m}^{2}}+{{\left( \frac{{{m}^{4}}-5}{2} \right)}^{2}}}\Leftrightarrow {{\left( \frac{{{m}^{4}}+5}{2} \right)}^{2}}={{m}^{2}}+{{\left( \frac{{{m}^{4}}-5}{2} \right)}^{2}}\Rightarrow \left[ \begin{align} & {{m}^{2}}=0\,\,\left( ktm \right) \\ & {{m}^{2}}=\frac{1}{5} \\ \end{align} \right.\Rightarrow m=\pm \,\frac{1}{\sqrt{5}}.\)
Vậy có tất cả hai giá trị \(m\) cần tìm \(\Rightarrow \) Số phần tử của \(S\) là \(2.\)
Chọn C