Câu hỏi:

Tiếp tuyến của đồ thị hàm số hàm số \(y = 2{x^3} + 3{x^2}\) tại điểm có tung độ bằng 5 có phương trình là?

  • A \(y = 12x - 7\)
  • B \(y =  - 12x - 7\)
  • C \(y = 12x + 17\)
  • D \(y =  - 12x + 17\)

Phương pháp giải:

Tìm điểm thuộc đồ thị hàm số có tung độ bằng 5.

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {{x_o};{y_0}} \right)\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).

Lời giải chi tiết:

\(\eqalign{  & y = 5 \Leftrightarrow 2{x^3} + 3{x^2} = 5 \Leftrightarrow x = 1 \Rightarrow \left( C \right) \cap Oy = M\left( {1;5} \right)  \cr   & y' = 6{x^2} + 6x \Rightarrow y'\left( 1 \right) = 12 \cr} \)

\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {1;5} \right)\) là: \(y = 12\left( {x - 1} \right) + 5 = 12x - 7\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay