Môn Toán - Lớp 12
40 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ nhận biết, thông hiểu
Câu hỏi:
Đồ thị hàm só nào sau đây có 3 đường tiệm cận?
Phương pháp giải:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = a\,\) hoặc\(\,\mathop {\lim }\limits_{x \to - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \,\) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \,\) thì \(x = a\)
là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
Đồ thị hàm số \(y = \dfrac{{1 - 2x}}{{1 + x}}\) có 2 đường tiệm cận là \(x = - 1;\,\,y = - 2\)
Đồ thị hàm số \(y = \dfrac{1}{{4 - {x^2}}}\) có 3 đường tiệm cận là \(x = 2;\,\,x = - 2;\,\,y = 0\)
Đồ thị hàm số\(y = \dfrac{x}{{{x^2} - x + 9}}\) có 1 đường tiệm cận là \(y = 0\)
Đồ thị hàm số\(y = \dfrac{{x + 3}}{{5x - 1}}\) có 2 đường tiệm cận là \(x = \dfrac{1}{5};\,\,y = \dfrac{1}{5}\)
Chọn: B.