Câu hỏi:
Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5\). Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]dx} \)
Phương pháp giải:
\(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)\( = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \)
Lời giải chi tiết:
\(\begin{array}{l}I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]dx} \\ = \int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} - 2\left. {\left( {\cos x} \right)} \right|_0^{\frac{\pi }{2}}\\ = 5 + 2 = 7\end{array}\)