Câu hỏi:

Cho hình chóp \(SABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a.\) Cạnh bên \(SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Thể tích khối chóp \(SABCD\) bằng:

  • A \({a^3}\)
  • B \(3{a^3}\)
  • C \(\dfrac{{{a^3}}}{3}\)
  • D \(2{a^3}\)

Phương pháp giải:

Thể tích khối chóp có diện tích đáy \(S\) và chiều cao \(h\) là \(V = \dfrac{1}{3}Sh.\)

Lời giải chi tiết:

Thể tích khối chóp đã cho là: \({V_{SABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.3a.{a^2} = {a^3}.\)

Chọn A.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay