Câu hỏi:

Nếu khối chóp \(OABC\) thỏa mãn \(OA = a,\,\,OB = b,\,\,OC = c\) và \(OA \bot OB,\,\,OB \bot OC,\,\,OC \bot OA\) thì có thể tích là:

  • A \(abc\)
  • B \(\dfrac{{abc}}{3}\)
  • C \(\dfrac{{abc}}{2}\)
  • D \(\dfrac{{abc}}{6}\)

Phương pháp giải:

Thể tích khối đa diện \(OABC\) có \(OA,\,\,OB,\,\,OC\)  đôi một vuông góc là: \(V = \dfrac{1}{6}OA.OB.OC.\)

Lời giải chi tiết:

Thể tích khối đa diện \(OABC\) là: \({V_{OABC}} = \dfrac{1}{6}abc.\) 

Chọn D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay