Câu hỏi:

Với hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \frac{\pi }{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Để tìm đạo hàm \(f'\left( 0 \right)\) một học sinh lập luận qua các bước sau:

Bước 1: \(\left| {f\left( x \right)} \right| = \left| x \right|\left| {\sin \frac{\pi }{x}} \right| \le \left| x \right|\)

Bước 2: Khi \(x \to 0\) thì \(\left| x \right| \to 0\)  nên \(\left| {f\left( x \right)} \right| \to 0 \Rightarrow f\left( x \right) \to 0\)

Bước 3: Do \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) = 0\)  nên hàm số liên tục tại \(x = 0.\)

Bước 4: Từ \(f\left( x \right)\)  liên tục tại \(x = 0 \Rightarrow f\left( x \right)\) có đạo hàm tại \(x = 0.\)

Lập luận trên nếu sai thì bắt đầu từ bước nào?

  • A Bước 1        
  • B Bước 2        
  • C Bước 3
  • D Bước 4.

Phương pháp giải:

Để hàm số có đạo hàm tại \({x_0}\)  thì hàm số liên tục tại \({x_0},\)  điều ngược lại chưa chắc đúng.

Lời giải chi tiết:

Một hàm số liên tục tại \({x_0}\)  chưa chắc có đạo hàm tại điểm đó, hơn nữa

\(\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{x\sin \frac{\pi }{x} - 0}}{x} = \mathop {\lim }\limits_{x \to 0} \sin \frac{\pi }{x} =  + \infty  \Rightarrow \) Hàm số không có đạo hàm tại \(x = 0.\) 

Lập luận trên sai từ bước 4.

Chọn D. 


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay