Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của BC. Tan góc giữa (SAI) và (ABCD)?
Phương pháp giải:
+) Gọi H là trung điểm của AB. Chứng minh \(SH \bot \left( {ABCD} \right)\)
+) Chứng minh \(AI \bot DH\)
+) Chứng minh \(\widehat {\left( {\left( {SAI} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SE;DH} \right)}\)
Lời giải chi tiết:
Gọi H là trung điểm của AB
Vì tam giác SAB vuông cân tại S \( \Rightarrow SH \bot AB\)
Ta có: \(\left. \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SAB} \right) \supset SH \bot AB\end{array} \right\} \Rightarrow SH \bot \left( {ABCD} \right)\)
Dễ dàng chứng minh được \(AI \bot DH\)
Ta có: \(\left. \begin{array}{l}AI \bot DH\\AI \bot SH\left( {SH \bot \left( {ABCD} \right)} \right)\end{array} \right\} \Rightarrow AI \bot \left( {SHD} \right) \Rightarrow AI \bot SE\)
\(\left. \begin{array}{l}\left( {SAI} \right) \cap \left( {ABCD} \right) = AI\\SE \bot AI\\DH \bot AI\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SAI} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SE;DH} \right)} = \widehat {SEH}\)
(Vì \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot HE \Rightarrow \Delta SHE\) vuông tại H \( \Rightarrow \widehat {SEH} < {90^0}\))
Xét tam giác vuông AHD có: \(HD = \sqrt {{a^2} + \dfrac{{{a^2}}}{4}} = \dfrac{{a\sqrt 5 }}{2}\)
\(HE.HD = A{H^2} \Rightarrow HE = \dfrac{{A{H^2}}}{{HD}} = \dfrac{{\dfrac{{{a^2}}}{4}}}{{\dfrac{{a\sqrt 5 }}{2}}} = a\dfrac{{\sqrt 5 }}{{10}}\)
Xét tam giác vuông SAB có: \(SH = \dfrac{1}{2}AB = \dfrac{a}{2}\)
Trong tam giác vuông SHE có: \(\tan \widehat {SEH} = \dfrac{{SH}}{{SE}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 5 }}{{10}}}} = \sqrt 5 \)
Chọn B.