Câu hỏi:
Cho phương trình \(m{x^3} - x + 1 = 0\) . Điều nào sau đây đúng?
Phương pháp giải:
Xét các trường hợp \(m = 0\) và \(m \ne 0\) .
Lời giải chi tiết:
Đặt \(f\left( x \right) = m{x^3} - x + 1\), hàm số liên tục trên \(\mathbb{R}.\) Ta có:
+) Với \(m = 0\) thì \(f\left( x \right) = 0 \Leftrightarrow - x + 1 = 0 \Leftrightarrow x = 1 \Rightarrow \) phương trình có nghiệm duy nhất.
+) Với \(m \ne 0\) thì \(f\left( x \right)\) là hàm số bậc \(3 \Rightarrow f\left( x \right) = 0\) luôn có nghiệm.
Chọn C.