Với \(a,b,c\) bất kỳ. Hãy so sánh \(3\left( {{a^2} + {b^2} + {c^2}} \right)\) và \({\left( {a + b + c} \right)^2}\)
$3({a^2} + {b^2} + {c^2}) = {(a + b + c)^2}$
$3({a^2} + {b^2} + {c^2}) \le {(a + b + c)^2}$
$3({a^2} + {b^2} + {c^2}) \ge {(a + b + c)^2}$
$3({a^2} + {b^2} + {c^2}) < {(a + b + c)^2}$
Phương pháp xét hiệu.
Xét hiệu:
$3({a^2} + {b^2} + {c^2}) - {(a + b + c)^2}$
$\begin{array}{l} = 3{a^2} + 3{b^2} + 3{c^2} - {a^2} - {b^2} - {c^2} - 2ab - 2bc - 2ac\\ = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac\\ = {(a - b)^2} + {(b - c)^2} + {(c - a)^2} \ge 0\end{array}$
(vì ${(a - b)^2} \ge 0;\,{(b - c)^2} \ge 0;\,{(c - a)^2} \ge 0$ với mọi \(a,b,c\))
Nên $3({a^2} + {b^2} + {c^2}) \ge {(a + b + c)^2}$ .
Đáp án : C
Các bài tập cùng chuyên đề
Cho \(m\) bất kỳ, chọn câu đúng.
Cho biết \(a < b\). Trong các khẳng định sau, số khẳng định sai là:
(I) \(a - 1 < b - 1\)
(II) \(a - 1 < b\)
(III) \(a + 2 < b + 1\)
Cho \(a\) bất kỳ, chọn câu sai.
Cho \(x - 3 \le y - 3,\) so sánh $x$ và $y$. Chọn đáp án đúng nhất.
Cho \(a > b\) khi đó
So sánh $m$ và $n$ biết $m-\dfrac{1}{2} = n$
Cho \(a + 8 < b\). So sánh \(a - 7\) và \(b - 15\)
Cho biết \(a - 1 = b + 2 = c - 3\) . Hãy sắp xếp các số \(a,b,c\) theo thứ tự tăng dần.
Với \(a,b\) bất kỳ. Chọn khẳng định sai.
Với \(x,y\) bất kỳ. Chọn khẳng định đúng?