Cho biết \(a < b\). Trong các khẳng định sau, số khẳng định sai là:
(I) \(a - 1 < b - 1\)
(II) \(a - 1 < b\)
(III) \(a + 2 < b + 1\)
\(1\)
\(2\)
\(3\)
\(0\)
Sử dụng tính chất liên hệ giữa thứ tự và phép cộng:
Nếu cộng cả hai vế với cùng một số thì bất đẳng thức không đổi chiều.
+ Vì \(a < b\), cộng hai vế của bất đẳng thức với \( - 1\) ta được \(a - 1 < b - 1 \) nên (I) đúng.
+ Vì \(a - 1 < b - 1\,\left( {cmt} \right)\) mà \(b - 1 < b\) nên \(a - 1 < b\) nên (II) đúng
+ Vì \(a < b\), cộng hai vế của bất đẳng thức với \(1\) ta được \(a + 1 < b + 1\) mà \(a + 1 < a + 2\) nên ta chưa đủ dữ kiện để nói rằng \(a + 2 < b + 1 \) nên (III) sai.
Vậy có $1$ khẳng định sai.
Đáp án : A
Các bài tập cùng chuyên đề
Cho \(m\) bất kỳ, chọn câu đúng.
Cho \(a\) bất kỳ, chọn câu sai.
Cho \(x - 3 \le y - 3,\) so sánh $x$ và $y$. Chọn đáp án đúng nhất.
Cho \(a > b\) khi đó
So sánh $m$ và $n$ biết $m-\dfrac{1}{2} = n$
Cho \(a + 8 < b\). So sánh \(a - 7\) và \(b - 15\)
Cho biết \(a - 1 = b + 2 = c - 3\) . Hãy sắp xếp các số \(a,b,c\) theo thứ tự tăng dần.
Với \(a,b,c\) bất kỳ. Hãy so sánh \(3\left( {{a^2} + {b^2} + {c^2}} \right)\) và \({\left( {a + b + c} \right)^2}\)
Với \(a,b\) bất kỳ. Chọn khẳng định sai.
Với \(x,y\) bất kỳ. Chọn khẳng định đúng?