Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x = - 7\).
\(m = 0\) hoặc \(m = 7\)
\(m = 1\) hoặc \(m = - 7\)
\(m = 0\) hoặc \(m = - 7\)
\(m = - 7\)
Thay giá trị của nghiệm vào phương trình ta được phương trình ẩn $m$ , biến đổi để đưa về phương trình tích $A\left( x \right).B\left( x \right) = 0$ , giải các phương trình $A\left( x \right) = 0;B\left( x \right) = 0$ rồi lấy hợp tất cả các nghiệm của chúng.
Thay \(x = - 7\) vào phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) ta được:
\(\left( {2m - 5} \right)\left( { - 7} \right) - 2{m^2} + 8 = 43\\ - 14m + 35 - 2{m^2} - 35 = 0\\ 2{m^2} + 14m = 0\\ 2m\left( {m + 7} \right) = 0\)
suy ra \(m = 0\) hoặc \(m + 7 = 0\) hay \(m = 0\) hoặc \(m = - 7\)
Vậy \(m = 0\) hoặc \(m = - 7\) thì phương trình có nghiệm \(x = - 7\) .
Đáp án : C
Các bài tập cùng chuyên đề
Phương trình: \(\left( {4 + 2x} \right)\left( {x - 1} \right) = 0\) có nghiệm là:
Các nghiệm của phương trình \(\left( {2 + 6x} \right)\left( { - {x^2} - 4} \right) = 0\) là:
Phương trình \(\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) = 0\) có số nghiệm là:
Tổng các nghiệm của phương trình \(\left( {{x^2} - 4} \right)\left( {x + 6} \right)\left( {x - 8} \right) = 0\) là:
Chọn khẳng định đúng.
Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là
Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là
Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là
Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là
Tập nghiệm của phương trình
\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:
Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.
Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).
Chọn khẳng định đúng.