Đề bài

Một con lắc lò xo dao động điều hòa với biên độ $A$, tần số góc $ω$. Li độ và vận tốc của vật khi $W_d=nW_t$ là:

  • A.

    \(x =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }},v =  \pm A\sqrt {\dfrac{n}{{n + 1}}} \)

  • B.

    \(x =  \pm A\sqrt {n + 1} ,v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • C.

    \(x =  \pm \dfrac{A}{{\sqrt {n + 1} }},v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • D.

    \(x =  \pm A\sqrt {\dfrac{n}{{n + 1}}} ,v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\)

Phương pháp giải

Xem lí thuyết phần biết động năng tại vị trí có li độ x gấp n lần thế năng của vật: Wđ = nWt

Lời giải của GV Loigiaihay.com

Tại vị trí có động năng gấp n lần thế năng của vật: Wđ = nWt

\(\left\{ \begin{array}{l}{W_d} = n{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{1}{{n + 1}}W\\{W_d} = \dfrac{n}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm \dfrac{A}{{\sqrt {n + 1} }}\\v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \end{array} \right.\)

 

Đáp án : C

Các bài tập cùng chuyên đề