Đề bài

Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và \(AB \bot BC\). Dựng \(AH\) là đường cao của \(\Delta SAB\). Khẳng định nào sau đây sai?

  • A.

    \(SA \bot CD\).

  • B.

    \(AH \bot BC\).

  • C.

    \(AH \bot \left( {SCD} \right)\).

  • D.

    \(AH \bot SC\).

Lời giải của GV Loigiaihay.com

Do \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot CD\) hay A đúng.

Do \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot AH\) nên B đúng.

Lại có \(\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\) nên D đúng.

Do \(AH \bot \left( {SBC} \right)\) nên nó không thể vuông góc với \(\left( {SCD} \right)\) nên C sai.

Đáp án : C

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề