Đề bài

Từ một điểm $A$ ở bên ngoài đường tròn $\left( {O;R} \right)$,vẽ hai tiếp tuyến $AB,AC$ với $\left( O \right)$. Đường thẳng vuông góc với $OB$ tại $O$ cắt tia $AC$ tại $N$. Đường thẳng vuông góc với $OC$ tại $O$ cắt tia $AB$ tại $M$.

Tứ giác $AMON$ là hình gì? 

  • A.

    Hình bình hành

  • B.

    Hình thoi

  • C.

    Hình thang

  • D.

    Hình chữ nhật

Đáp án : B

Phương pháp giải

Sử dụng dấu hiệu nhận biết các hình đặc biệt.

Lời giải của GV Loigiaihay.com

Dễ có $AMON$ là hình bình hành (Vì $ON{\rm{//}}AM;OM{\rm{//}}AN$).

Ta chứng minh \(OM = ON\).

Xét tam giác $OBM$ và tam giác $OCN$ có :

\(\widehat {OBM} = \widehat {OCN} = {90^0};\)

\({\rm{ }}OB = OC = R,\)

và \(\widehat {OMB} = \widehat {ONC} = \widehat A \)

\(\Rightarrow \Delta OBM = \Delta OCN\)

\( \Rightarrow OM = ON \Rightarrow AMON\) là hình thoi .

Các bài tập cùng chuyên đề

Bài 1 :

Cho $\left( {O;R} \right)$. Đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;R} \right)$ tại tiếp điểm $A$ khi

Xem lời giải >>
Bài 2 :

Cho $\left( {O;5cm} \right)$. Đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;5\,cm} \right)$, khi đó

Xem lời giải >>
Bài 3 :

Cho tam giác $ABC$ có $AC = 3cm,AB = 4cm,BC = 5cm$. Vẽ đường tròn $\left( {C;CA} \right)$. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ cân tại $A$; đường cao $AH$ và $BK$ cắt nhau tại $I$. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính $AI$.

Xem lời giải >>
Bài 5 :

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Đường tròn đường kính $BH$ cắt $AB$ tại $D$, đường tròn đường kính $CH$ cắt $AC$ tại $E$ . Chọn khẳng định sai trong các khẳng định sau

Xem lời giải >>
Bài 6 :

Cho nửa đường tròn (O ; R), AB là đường kính. Dây BC có độ dài R. Trên tia đối của tia CB lấy điểm D sao cho \(CD = 3R. \) Chọn câu đúng.

Xem lời giải >>
Bài 7 :

Cho \(\widehat {xOy}\) , trên Ox lấy P, trên Oy lấy Q sao cho chu vi ∆POQ bằng 2a không đổi. Chọn câu đúng.

Xem lời giải >>