Đề bài

Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Đường tròn đường kính $BH$ cắt $AB$ tại $D$, đường tròn đường kính $CH$ cắt $AC$ tại $E$ . Chọn khẳng định sai trong các khẳng định sau

  • A.

    $DE$ là cát tuyến của đường tròn đường kính $BH$

  • B.

    $DE$ là tiếp tuyến của đường tròn đường kính $BH$

  • C.

    Tứ giác$AEHD$ là hình chữ nhật

  • D.

    $DE \bot DI$ (với $I$ là trung điểm $BH$)

Phương pháp giải

Sử dụng dấu hiệu nhận biết các hình đặc biệt và cách chứng minh một đường thẳng là tiếp tuyến của đường tròn.

Lời giải của GV Loigiaihay.com

Gọi $I$, $J$ lần lượt là trung điểm của $BH$ và $CH.$

Để chứng minh $DE$ là tiếp tuyến của đường tròn tâm $I$ đường kính $BH$ ta chứng minh

\(ID \bot DE\) hay $\widehat {ODI} = {90^o}$

Vì $D,E$ lần lượt thuộc đường tròn đường kính $BH$ và $HC$ nên ta có: $\widehat {BDH} = \widehat {CEH} = {90^0}$

Suy ra tứ giác $ADHE$ là hình chữ nhật.

Gọi $O$ là giao điểm của $AH$ và$DE$, khi đó ta có $OD = OH = OE = OA$ .

Suy ra $\Delta ODH$ cân tại $O \Rightarrow \widehat {ODH} = \widehat {OHD}$

Ta cũng có $\Delta IDH$ cân tại $I$$ \Rightarrow \widehat {IDH} = \widehat {IHD}$

Từ đó $ \Rightarrow \widehat {IDH} + \widehat {HDO} = \widehat {IHD} + \widehat {DHO} \Rightarrow \widehat {IDO} = 90^\circ $$ \Rightarrow ID \bot DE$

Ta có \(ID \bot DE,D \in \left( I \right)\) nên  $DE$ là tiếp tuyến của đường tròn đường kính $BH$.

Từ chứng minh trên suy ra các phương án B,C,D đúng.

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho $\left( {O;R} \right)$. Đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;R} \right)$ tại tiếp điểm $A$ khi

Xem lời giải >>
Bài 2 :

Cho $\left( {O;5cm} \right)$. Đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;5\,cm} \right)$, khi đó

Xem lời giải >>
Bài 3 :

Cho tam giác $ABC$ có $AC = 3cm,AB = 4cm,BC = 5cm$. Vẽ đường tròn $\left( {C;CA} \right)$. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ cân tại $A$; đường cao $AH$ và $BK$ cắt nhau tại $I$. Khi đó đường thẳng nào sau đây là tiếp tuyến của đường tròn đường kính $AI$.

Xem lời giải >>
Bài 5 :

Cho nửa đường tròn (O ; R), AB là đường kính. Dây BC có độ dài R. Trên tia đối của tia CB lấy điểm D sao cho \(CD = 3R. \) Chọn câu đúng.

Xem lời giải >>
Bài 6 :

Cho \(\widehat {xOy}\) , trên Ox lấy P, trên Oy lấy Q sao cho chu vi ∆POQ bằng 2a không đổi. Chọn câu đúng.

Xem lời giải >>