Trên mặt phẳng tọa độ $Oxy$, xác định vị trí tương đối của điểm $A\left( { - 1; - 1} \right)$ và đường tròn tâm là gốc tọa độ $O$, bán kính $R = 2\,$.
Điểm $A$ nằm ngoài đường tròn
Điểm $A$ nằm trên đường tròn
Điểm $A$ nằm trong đường tròn
Không kết luận được.
+ Tính khoảng cách theo công thức $AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} $ với $A\left( {{x_A};{y_A}} \right);B\left( {{x_B};{y_B}} \right)$
+ Sử dụng vị trí tương đối giữa điểm và đường tròn
Cho điểm $M$ và đường tròn $\left( {O;R} \right)$ ta so sánh khoảng cách $OM$ với bán kính R để xác định vị trí tương đối theo bảng sau:
Vị trí tương đối |
Hệ thức |
M nằm trên đường tròn $\left( O \right)$ |
\(OM = R\) |
M nằm trong đường tròn $\left( O \right)$ |
\(OM < R\) |
M nằm ngoài đường tròn $\left( O \right)$ |
\(OM > R\) |
Ta có $OA = \sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2}} = \sqrt 2 < 2 = R$ nên $A$ nằm trong đường tròn tâm $O$ bán kính $R = 2$.
Đáp án : C
Các bài tập cùng chuyên đề
Số tâm đối xứng của đường tròn là:
Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn
Tâm đường tròn ngoại tiếp tam giác là
Cho đường tròn $\left( {O;R} \right)$ và điểm $M$ bất kỳ, biết rằng $OM = R$. Chọn khẳng định đúng?
Xác định tâm và bán kính của đường tròn đi qua cả bốn đỉnh của hình vuông $ABCD$ cạnh $a.$
Tâm của đường tròn ngoại tiếp tam giác vuông là
Cho tam giác $ABC$ có các đường cao $BD,CE$ . Biết rằng bốn điểm $B,E,D,C$ cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó.
Cho tam giác $ABC$ vuông tại $A$ , có$AB = 15cm;AC = 20cm$. Tính bán kính đường tròn ngoại tiếp tam giác $ABC.$
Cho hình chữ nhật $ABCD$ có$AB = 12cm,BC = 5cm$ .Tính bán kính đường tròn đi qua bốn đỉnh $A,B,C,D$.
Cho hình vuông $ABCD$. Gọi $M,N$ lần lượt là trung điểm của $AB,BC$ . Gọi $E$ là giao điểm của $CM$ và $DN$. Tâm của đường tròn đi qua bốn điểm $A,D,E,M$ là