Cho tứ diện $ABCD$ có $AB = AC = AD$ và \(\widehat {BAC} = \widehat {BAD} = {60^0}\). Gọi $I$ và $J$ lần lượt là trung điểm của $AB$ và $CD$. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {IJ} \) và \(\overrightarrow {CD} \)?
$45^\circ $
$90^\circ $
$60^\circ $
$120^\circ $
Sử dụng các tính chất của tam giác đều, tam giác cân

Ta có $BAC$ và $BAD$ là 2 tam giác đều, $I$ là trung điểm của $AB$ nên $CI = DI$ (2 đường trung tuyến của 2 tam giác đều chung cạnh $AB$) nên $CID$ là tam giác cân ở $I$. Do đó $IJ \bot CD$
Đáp án : B

Các bài tập cùng chuyên đề