Đề bài

Cho hình chóp \(S.ABC\) có \(SA = SB\) và \(CA = CB\). Tính số đo của góc giữa hai đường thẳng chéo nhau \(SC\) và \(AB.\)

  • A.

    \({30^0}.\)

  • B.

    \({45^0}.\)

  • C.

    \({60^0}.\)

  • D.

    \({90^0}.\)

Phương pháp giải

Tính tích vô hướng của hai véc tơ \(\overrightarrow {SC} \) và \(\overrightarrow {AB} \) rồi suy ra đáp án.

Lời giải của GV Loigiaihay.com

Xét \(\overrightarrow {SC} .\overrightarrow {AB}  =  - \overrightarrow {CS} .\left( {\overrightarrow {CB}  - \overrightarrow {CA} } \right) = \overrightarrow {CS} .\overrightarrow {CA}  - \overrightarrow {CS} .\overrightarrow {CB} \)

\( = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB}\).

Do \(\Delta SAC = \Delta SBC\left( {c.c.c} \right)\) nên \(\widehat {SCA} = \widehat {SCB} \Rightarrow \cos \widehat {SCA} = \cos \widehat {SCB}\).

Do đó \(CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} = 0\) (do \(CA = CB\)) hay \(\overrightarrow {SC} .\overrightarrow {AB}  = 0\).

Vậy \(SC \bot AB\).

Đáp án : D

Các bài tập cùng chuyên đề