Cho các cặp số sau (0;-1),\((\sqrt{3};2-\sqrt{3})\),\((1;\sqrt{3}-3)\),\((\sqrt{3}+1;1)\). Cặp số nào không là nghiệm của phương trình \((\sqrt{3}-1)x-y=1\)?
\((\sqrt{3}+1;1)\)
Thay các cặp số đã cho vào phương trình. Cặp nào thỏa mãn thì là nghiệm của phương trình đã cho.
\((\sqrt{3}-1)x-y=1\,\,\,\,\,\,(1)\)
Thay x = 0, y = -1 vào vế trái của (1) ta được: \((\sqrt{3}-1).0-(-1)=0+1=1\) .
Vậy (0; -1) là nghiệm của (1).
Thay \((\sqrt{3},2-\sqrt{3})\) vào vế trái của (1) ta được: \((\sqrt{3}-1).\sqrt{3}-(2-\sqrt{3})=3-\sqrt{3}-2+\sqrt{3}=1\).
Vậy \((\sqrt{3},2-\sqrt{3})\) là nghiệm của (1).
Thay \((1;\sqrt{3}-3)\) vào vế trái của (1) ta được: \((\sqrt{3}-1).1-(\sqrt{3}-3)=\sqrt{3}-1-\sqrt{3}+3=2\ne 1\).
Vậy \((1;\sqrt{3}-3)\)không là nghiệm của (1).
Thay \((\sqrt{3}+1;1)\) vào vế trái của (1) ta được: \((\sqrt{3}-1).(\sqrt{3}+1)-1=3-1-1=1\).
Vậy \((\sqrt{3}+1;1)\) là nghiệm của (1).
Đáp án : C
Các bài tập cùng chuyên đề
Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) có nghiệm duy nhất khi
Hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) (các hệ số khác $0$) vô nghiệm khi
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l} - 2x + y = - 3\\3x - 2y = 7\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}x + y = - 1\\mx + y = 2m\end{array} \right.\) vô nghiệm.
Không giải hệ phương trình , dự đoán số nghiệm của hệ \(\left\{ \begin{array}{l}\sqrt 2 x - 2y = 3\\3\sqrt 2 x - 6y = 5\end{array} \right.\)
Xác định giá trị của tham số $m$ để hệ phương trình \(\left\{ \begin{array}{l}mx - 2y = 1\\2x - my = 2{m^2}\end{array} \right.\) có nghiệm duy nhất
Hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.\) nhận cặp số nào sau đây là nghiệm
Cho hệ phương trình \(\left\{ \begin{array}{l} - mx + y = - 2m\\x + {m^2}y = 9\end{array} \right..\) Tìm các giá trị của tham số \(m\) để hệ phương trình nhận cặp \(\left( {1;2} \right)\) làm nghiệm.
Cặp số \(\left( { - 2; - 3} \right)\) là nghiệm của hệ phương trình nào sau đây?
Cho hệ phương trình: \(\left\{ \begin{array}{l}3mx + y = - 2m\\ - 3x - my = - 1 + 3m\end{array} \right..\) Xác định các giá trị của tham số \(m\) để hệ phương trình vô số nghiệm.
Bằng cách tìm giao điểm của hai đường thẳng $d: - 2x + y = 3$ và $d':x + y = 5$ ta tìm được nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {{x_0};{y_0}} \right)$. Tính ${y_0} - {x_0}$.