Hai đường tròn \(\left( {O;5} \right)\) và \(\left( {O';8} \right)\) có vị trí tương đối với nhau như thế nào biết \(OO' = 12\)
Xét hai đường tròn \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) ta có:
+) \(\left| {{R_1} - {R_2}} \right| < {O_1}{O_2} < {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) cắt nhau.
+) \({O_1}{O_2} > {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) ngoài nhau.
+) \({O_1}{O_2} < \left| {{R_1} - {R_2}} \right|\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) trong nhau.
+) \({O_1}{O_2} = {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) tiếp xúc ngoài.
+) \({O_1}{O_2} = \left| {{R_1} - {R_2}} \right|\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) tiếp xúc trong.
Ta có: \(\left| {{R_1} - {R_2}} \right| = 8 - 5 = 3;\;\;{R_1} + {R_2} = 8 + 5 = 13.\)
\( \Rightarrow \left| {{R_1} - {R_2}} \right| < OO' < {R_1} + {R_2} \Rightarrow \) hai đường tròn cắt nhau.
Đáp án : D
Các bài tập cùng chuyên đề
Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là
Cho hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?
Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .
Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là
Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường tròn $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?
Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.
Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là
Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:
Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là: