Đề bài

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định sai.

  • A.

    $\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\,\,$

  • B.

    $\cot \alpha  = \dfrac{{\cos \alpha }}{{\sin \alpha }}\,\,$

  • C.

    $\tan \alpha .\cot \alpha  = 1$

  • D.

    ${\tan ^2}\alpha  - 1 = {\cos ^2}\alpha $

Phương pháp giải

Dựa vào khái niệm tỉ số lượng giác của góc nhọn trong tam giác vuông.

Lời giải của GV Loigiaihay.com

Giả sử ta có tam giác vuông có các cạnh và góc $\alpha $ như hình vẽ.

Áp dụng tỉ số lượng giác của góc nhọn, ta có:

$\sin \alpha =\frac{b}{a},\cos \alpha =\frac{c}{a},\tan \alpha =\frac{b}{c},\cot \alpha =\frac{c}{b}$.

Ta có:

$\tan \alpha =\frac{b}{c}=\frac{b}{a}.\frac{a}{c}=\frac{b}{a}:\frac{c}{a}=\frac{\sin \alpha }{\cos \alpha }$ nên A đúng.

$\cot \alpha =\frac{c}{b}=\frac{c}{a}.\frac{a}{b}=\frac{c}{a}:\frac{b}{a}=\frac{\cos \alpha }{\sin \alpha }$ nên B đúng.

$\tan \alpha .\cot \alpha =\tan \alpha .\frac{1}{\tan \alpha }=1$ nên C đúng.

${{\tan }^{2}}\alpha -1={{\left( \frac{b}{c} \right)}^{2}}-1=\frac{{{b}^{2}}-{{c}^{2}}}{{{c}^{2}}}\ne {{\left( \frac{c}{a} \right)}^{2}}={{\cos }^{2}}\alpha $ nên D sai.

Từ đây, ta có các công thức lượng giác mở rộng sau:

$\tan \alpha =\frac{\sin \alpha }{\cos \alpha };\cot \alpha =\frac{\cos \alpha }{\sin \alpha };\tan \alpha .\cot \alpha =1$

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $MNP$ vuông tại $M$. Khi đó $\cos \widehat {MNP}$ bằng

Xem lời giải >>
Bài 2 :

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định đúng.

Xem lời giải >>
Bài 3 :

Cho $\alpha $ và $\beta $ là hai góc nhọn bất kỳ thỏa mãn $\alpha  + \beta  = 90^\circ $. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ vuông tại  $C$ có \(BC = 1,2\,cm,\,\,AC = 0,9\,cm.\) Tính các tỉ số lượng giác $\sin B;\cos B$ .

Xem lời giải >>
Bài 5 :

Cho tam giác $ABC$ vuông tại  $A$ có \(BC = 8\,cm,\,\,AC = 6cm.\) Tính tỉ số lượng giác $\tan C$ (làm tròn đến chữ số thập phân thứ $2$ ).

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$ vuông tại  $A$, đường cao $AH$ có \(AB = 13\,cm,\,BH = 0,5\,dm\) Tính tỉ số lượng giác $\sin C$ (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 7 :

Cho tam giác $ABC$ vuông tại  $A$, đường cao $AH$ có \(CH = 4\,cm,\,BH = 3\,cm.\) Tính tỉ số lượng giác $\cos C$ (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 8 :

Cho tam giác $ABC$ vuông tại  $A$. Hãy tính $\tan C$ biết rằng \(\cot B = 2\).

Xem lời giải >>
Bài 9 :

Cho tam giác $ABC$ vuông tại  $A$ có \(AB = 5\,cm,\,\,\cot C = \dfrac{7}{8}\) . Tính độ dài các đoạn thẳng $AC$ và $BC$ . (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 10 :

Cho $\alpha$ là góc nhọn. Tính \(\sin \alpha,\,\cot \alpha \) biết \(\cos \alpha  = \dfrac{2}{5}\).

Xem lời giải >>
Bài 11 :

Không dùng bảng số và máy tính, hãy so sánh \(\sin 20^\circ \) và \(\sin 70^\circ \)

Xem lời giải >>
Bài 12 :

Sắp xếp các tỉ số lượng giác \(\tan 43^\circ ,\,\,\cot 71^\circ ,\,\,\tan 38^\circ ,\,\,\cot 69^\circ 15',\,\tan 28^\circ \) theo thứ tự tăng dần.

Xem lời giải >>
Bài 13 :

Tính giá trị biểu thức $A = {\sin ^2}1^\circ  + {\sin ^2}2^\circ  + ... + {\sin ^2}88^\circ  + {\sin ^2}89^\circ  + {\sin ^2}90^\circ $

Xem lời giải >>
Bài 14 :

Cho $\alpha $ là góc nhọn bất kỳ. Khi đó $C = {\sin ^4}\alpha  + {\cos ^4}\alpha $ bằng

Xem lời giải >>
Bài 15 :

Cho $\alpha $ là góc nhọn bất kỳ. Rút gọn $P = \left( {1 - {{\sin }^2}\alpha } \right).{\cot ^2}\alpha  + 1 - {\cot ^2}\alpha $ ta được

Xem lời giải >>
Bài 16 :

Cho $\alpha $ là góc nhọn bất kỳ. Biểu thức $Q = \dfrac{{1 + {{\sin }^2}\alpha }}{{1 - {{\sin }^2}\alpha }}$ bằng

Xem lời giải >>
Bài 17 :

Cho $\tan \alpha  = 2$. Tính giá trị của biểu thức $G = \dfrac{{2\sin \alpha  + \cos \alpha }}{{\cos \alpha  - 3\sin \alpha }}$

Xem lời giải >>
Bài 18 :

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng

Xem lời giải >>
Bài 19 :

Cho $ \alpha $ là góc nhọn. Tính \(\cot \alpha \) biết \(\sin \alpha  = \dfrac{5}{{13}}\).

Xem lời giải >>
Bài 20 :

Tính giá trị biểu thức $B = \tan 1^\circ .\tan 2^\circ .\tan 3^\circ .....\tan88^\circ .\tan89^\circ $

Xem lời giải >>