Một tam giác vuông có cạnh huyền bằng \(5\), còn đường cao tương ứng cạnh huyền là \(2.\) Hãy tính cạnh nhỏ nhất của tam giác vuông này.
Giả sử tam giác đã cho là \(\Delta ABC\) vuông tại \(A\) có \(AB < AC,\,\,\,BC = 5,\,\,\,AH = 2.\)
Đặt \(BH = x\,\,\,\left( {0 < x < 2,5} \right).\)
Khi đó áp dụng hệ thức lượng trong tam giác vuông và định lý Pitago để tính \(x\) và từ đó suy ra độ dài các cạnh của tam giác.
Giả sử tam giác đã cho là \(\Delta ABC\) vuông tại \(A\) có \(AB < AC,\,\,\,BC = 5,\,\,\,AH = 2.\)
Đặt \(BH = x\,\,\,\left( {0 < x < 2,5} \right) \Rightarrow HC = 5 - x.\)
Áp dụng hệ thức lượng trong \(\Delta ABC\) vuông tại \(A\) có đường cao \(AH\) ta có:
\( \Rightarrow A{H^2} = BH.CH \Leftrightarrow {2^2} = x\left( {5 - x} \right)\)
\( \Leftrightarrow {x^2} - 5x + 4 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\,\,\,\left( {tm} \right)\\x = 4\,\,\,\left( {ktm} \right)\end{array} \right.\)
\( \Rightarrow A{B^2} = BC.BH = 5.1 = 5 \Leftrightarrow AB = \sqrt 5 .\)
Vậy cạnh nhỏ nhất của tam giác đã cho có độ dài là \(\sqrt 5 .\)
Đáp án : A
Các bài tập cùng chuyên đề
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ (như hình vẽ). Hệ thức nào sau đây là đúng?
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ (như hình vẽ). Hệ thức nào sau đây là sai?
Tính $x,y$ trong hình vẽ sau:
Tính $x,y$ trong hình vẽ sau:
Cho tam giác $ABC$ vuông tại $A$, $AH \bot BC$( $H$ thuộc $BC$ ). Cho biết $AB:AC = 3:4$ và $BC = 15cm.$ Tính độ dài đoạn thẳng $BH$.
Tính $x,y$ trong hình vẽ sau:
Tính $x$ trong hình vẽ sau (làm tròn đến chữ số thập phân thứ hai)
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH.$ Cho biết $AB:AC = 3:4$ và $AH = 6cm.$ Tính độ dài các đoạn thẳng $CH.$
Tính $x,y$ trong hình vẽ sau:
Tính $x$ trong hình vẽ sau:
Cho ABCD là hình thang vuông tại $A$ và $D.$Đường chéo $BD$ vuông góc với $BC.$ Biết $AD = 12cm,DC = 25cm$ . Tính độ dài $BC$, biết $BC < 20$
Tính diện tích hình thang ABCD có đường cao bằng 12cm, hai đường chéo AC và BD vuông góc với nhau, BD = 15cm.
Cho \(\Delta ABC\) cân tại \(A\), kẻ đường cao \(AH\) và \(CK\) . Biết \(AH = 7,5cm;\,\,\,CK = 12cm.\) Tính \(BC,AB\).
Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Gọi \(M,N\) theo thứ tự là trung điểm của \(AB,AC\). Biết \(HM = 15cm,HN = 20cm\). Tính \(HB,HC,AH\).
Cho tam giác \(ABC\) vuông tại \(A\) có cạnh \(AB = 6cm\) và \(AC = 8cm\) . Các phân giác trong và ngoài của góc \(B\) cắt đường thẳng \(AC\) lần lượt tại \(M\) và \(N\). Tính các đoạn thẳng \(AM\) và \(AN\).
Cho \(\Delta ABC\) vuông tại \(A\) có \(AB = 3cm,\,AC = 4cm,\,\) đường cao \(AH\) và đường trung tuyến \(AM\). Độ dài đoạn thẳng \(HM\) là
Cho tam giác \(ABC\) vuông tại \(A\) , đường cao \(AH\) . Biết \(AB = 10cm;\,AH = 6cm\). Tính độ dài các cạnh \(AC,BC\) của tam giác \(ABC\).