Đề bài

Một hạt chuyển động có tốc độ rất lớn \(v=0,6c\). Nếu tốc độ của hạt tăng \(\frac{4}{3}\) lần thì động năng của hạt tăng bao nhiêu lần?

  • A.
    \(\frac{4}{3}\)
  • B.
    \(\frac{16}{9}\)
  • C.
    \(\frac{8}{3}\)
  • D.
    \(\frac{9}{4}\)
Phương pháp giải

Động năng của hạt:

\({{\text{W}}_{d}}=E-{{E}_{0}}=m{{c}^{2}}-{{m}_{0}}{{c}^{2}}=\left( \frac{1}{\sqrt{1-\frac{{{v}^{2}}}{{{c}^{2}}}}}-1 \right){{m}_{0}}{{c}^{2}}\)

Lời giải của GV Loigiaihay.com

Động năng của hạt được xác định bởi công thức:

\({{\text{W}}_{d}}=\left( \frac{1}{\sqrt{1-\frac{{{v}^{2}}}{{{c}^{2}}}}}-1 \right){{m}_{0}}{{c}^{2}}\)

+ Khi \(v=0,6c\Rightarrow {{\text{W}}_{d}}=\left( \frac{1}{\sqrt{1-\frac{{{\left( 0,6.c \right)}^{2}}}{{{c}^{2}}}}}-1 \right){{m}_{0}}{{c}^{2}}=\frac{1}{4}.{{m}_{0}}{{c}^{2}}\,\,\left( 1 \right)\)

+ Khi tốc độ của hạt tăng \(\frac{4}{3}\) lần:

\(v'=\frac{4}{3}.0,6c=0,8c\Rightarrow {{\text{W}}_{d}}'=\left( \frac{1}{\sqrt{1-\frac{{{\left( 0,8.c \right)}^{2}}}{{{c}^{2}}}}}-1 \right){{m}_{0}}{{c}^{2}}=\frac{2}{3}.{{m}_{0}}{{c}^{2}}\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra: \({{\text{W}}_{d}}'=\frac{8}{3}{{\text{W}}_{d}}\)

Đáp án : C

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề